हिंदी

The Given Figure Represents a Kite with a Circular and a Semicircular Motifs Stuck on It. the Radius of a Circle is 2.5 Cm and the Semicircle is 2 Cm. If Diagonals Ac and Bd Are of Lengths 12 Cm and 8 Cm Respectively, Find the Area of the - Mathematics

Advertisements
Advertisements

प्रश्न

The given figure represents a kite with a circular and a semicircular motifs stuck on it.
The radius of a circle is 2.5 cm and the semicircle is 2 cm. If diagonals AC and BD are
of lengths 12 cm and 8 cm respectively, find the area of the:

1) Shaded part. Give your answer correct to the nearest whole number.

2) Unshaded part

उत्तर

1) Area of the shaded part = Area of the circle + area   of the semicircle

`= pi(2.5)^2 + (pi(2)^2)/2`

`= pi[6.25+2]`

`= 22/7 [8.25]`

`~~ 26 cm^2`

2) Area of kite = `"product of the diagonals"/2` = `(AC xx BD)/2 = (12xx8)/2 = 48 cm^2`

Area of the unshaded part = Area of the kite - Area of the shaded part

= 48 - 26 

= `22 cm^2`

shaalaa.com
Simple Applications of All Co-ordinate Geometry.
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2015-2016 (March)

APPEARS IN

संबंधित प्रश्न

In the given figure ABCD is a rectangle. It consists of a circle and two semi-circles each of
which are of radius 5 cm. Find the area of the shaded region. Give your answer correct to
three significant figures


Use graph paper for this question (Take 2 cm = 1 unit along both x and y-axis). ABCD is a quadrilateral whose vertices are A(2, 2), B(2, –2), C(0, –1) and D(0, 1).

1) Reflect quadrilateral ABCD on the y-axis and name it as A'B'CD

2) Write down the coordinates of A' and B'.

3) Name two points which are invariant under the above reflection

4) Name the polygon A'B'CD


Three vertices of parallelogram ABCD taken in order are A(3, 6), B(5, 10) and C(3, 2)

1) the coordinate of the fourth vertex D

2) length of diagonal BD

3) equation of the side AD of the parallelogram ABCD


A straight line passes through the points P(–1, 4) and Q(5, –2). It intersects the co-ordinate axes at points A and B. M is the mid-point of the segment AB. Find:

  1. The equation of the line.
  2. The co-ordinates of A and B.
  3. The co-ordinates of M.

O(0, 0), A(3, 5) and B(−5, −3) are the vertices of triangle OAB. Find the equation of median of triangle OAB through vertex O.


O(0, 0), A(3, 5) and B(−5, −3) are the vertices of triangle OAB. Find the equation of altitude of triangle OAB through vertex B.


A line AB meets the x-axis at point A and y-axis at point B. The point P(−4, −2) divides the line segment AB internally such that AP : PB = 1 : 2. Find:

  1. the co-ordinates of A and B.
  2. equation of line through P and perpendicular to AB.

Use a graph sheet for this question. 
Take 1 cm = 1 unit along both x and y axis.
(i) Plot the following points:
      A(0,5), B(3,0), C(1,0)  and  D(1,–5)
(ii) Reflect the points B, C and D on the y axis and name them as  B',C'andD' respectively.
(iii) Write down the coordinates of B',C 'and D'
(iv) Join the point A, B, C, D, D ', C ', B', A in order and give a name to the closed figure ABCDD'C'B


Without using distance formula, show that the points A(12,8), B(-2,6) and C(6,0) form a right-angled triangle.

A line is of length 10 units and one end is at the point (2, – 3). If the abscissa of the other end be 10, prove that its ordinate must be 3 or – 9.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×