हिंदी

The Path of a Train a is Given by the Equation 3x + 4y − 12 = 0 and the Path of Another Train B is Given by the Equation 6x + 8y − 48 = 0. Represent this Situation Graphically. - Mathematics

Advertisements
Advertisements

प्रश्न

The path of a train A is given by the equation 3x + 4y − 12 = 0 and the path of another train
B is given by the equation 6x + 8y − 48 = 0. Represent this situation graphically.

उत्तर

We have 

        3x + 4y - 12 = 0 

 ⇒    3x = 12  - 4y 

 ⇒     3x =12-4y3

Putting  y  = 0  We get x12-4×03=4

Putting  y = 3 , we get  x =12-4×03=0 

Thus, we have the following table for the points on the line  3x + 4y - 12 =  0 

4
 0  3

We have 

 6x + 8y - 48 = 0 

6x + 8y = 48 

6x = 48 - 8y 

x=48-8y6

Putting  y = 6 , we get  x=48-8×66=0

 Putting y = 4 we get x=48-8×36=4

Thus, we have the following table for the points on the line 6x + 8y - 48 = 0

x 0 4
y 6 3

shaalaa.com
Linear Equation in Two Variables
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Linear Equations in Two Variables - Exercise 7.3

APPEARS IN

आरडी शर्मा Mathematics [English] Class 9
अध्याय 7 Linear Equations in Two Variables
Exercise 7.3 | Q 19
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.