Advertisements
Advertisements
प्रश्न
The quadratic equation `2x^2 - sqrt(5)x + 1 = 0` has ______.
विकल्प
two distinct real roots
two equal real roots
no real roots
more than two real roots
उत्तर
The quadratic equation `2x^2 - sqrt(5)x + 1 = 0` has no real roots.
Explanation:
Given equation is `2x^2 - sqrt(5)x + 1` = 0
On comapring with ax2 + bx + c = 0, we get
a = 2, b = `-sqrt(5)` and c = 1
∴ Discriminant, D = b2 – 4ac
= `(-sqrt(5))^2 - 4 xx (2) xx (1)`
= 5 – 8
= – 3 < 0
Since, discrimant is negative,
Therefore quadratic equation `2x^2 - sqrt(5)x + 1` = 0 has no real roots
i.e., imaginary roots.
संबंधित प्रश्न
Find the nature of the roots of the following quadratic equation. If the real roots exist, find them:
2x2 - 6x + 3 = 0
Determine the nature of the roots of the following quadratic equation:
9a2b2x2 - 24abcdx + 16c2d2 = 0
Find the values of k for which the roots are real and equal in each of the following equation:
2x2 + kx + 3 = 0
In the following determine the set of values of k for which the given quadratic equation has real roots:
2x2 + 3x + k = 0
Find the value of the discriminant in the following quadratic equation :
`4 sqrt 3 "x"^2 + 5"x" - 2 sqrt 3 = 0`
`sqrt(3)x^2 + 11x + 6sqrt(3)` = 0
Find the values of k so that the sum of tire roots of the quadratic equation is equal to the product of the roots in each of the following:
kx2 + 2x + 3k = 0
Find the discriminant of the following equations and hence find the nature of roots: 2x2 + 15x + 30 = 0
Find the nature of the roots of the following quadratic equations: `x^2 - 2sqrt(3)x - 1` = 0 If real roots exist, find them.
Choose the correct answer from the given four options :
If the equation 2x² – 6x + p = 0 has real and different roots, then the values of p are given by
Find the value(s) of k for which each of the following quadratic equation has equal roots: 3kx2 = 4(kx – 1)
Find the value(s) of k for which each of the following quadratic equation has equal roots: (k + 4)x2 + (k + 1)x + 1 =0 Also, find the roots for that value (s) of k in each case.
The roots of the quadratic equation `2"x"^2 - 2sqrt2"x" + 1 = 0` are:
If the roots of equation 3x2 + 2x + (p + 2) (p – 1) = 0 are of opposite sign then which of the following cannot be the value of p?
Find the roots of the quadratic equation by using the quadratic formula in the following:
–3x2 + 5x + 12 = 0
Every quadratic equations has at most two roots.
The number of integral values of m for which the equation (1 + m2)x2 – 2(1 + 3m)x + (1 + 8m) = 0 has no real root is ______.
Statement A (Assertion): If 5 + `sqrt(7)` is a root of a quadratic equation with rational co-efficients, then its other root is 5 – `sqrt(7)`.
Statement R (Reason): Surd roots of a quadratic equation with rational co-efficients occur in conjugate pairs.
Find the value of ‘c’ for which the quadratic equation
(c + 1) x2 - 6(c + 1) x + 3(c + 9) = 0; c ≠ - 1
has real and equal roots.