Advertisements
Advertisements
प्रश्न
The relation between the number of words y a person learns in x hours is given by y = `sqrt(x), 0 ≤ x ≤ 9`. What is the approximate number of words learned when x changes from 1 to 1.1 hours?
उत्तर
y = `sqrt(x)`
dy = `52 xx 1/2 xx x^((-1)/2) "d"x`
x = 1
dx = 0.1
`26/sqrt(x) xx 0.1 = 26 xx 0.1`
= 2.6
≅ 3 words
APPEARS IN
संबंधित प्रश्न
Use the linear approximation to find approximate values of `(123)^(2/3)`
Use the linear approximation to find approximate values of `root(3)(26)`
Find a linear approximation for the following functions at the indicated points.
f(x) = x3 – 5x + 12, x0 = 2
Find a linear approximation for the following functions at the indicated points.
g(x) = `sqrt(x^2 + 9)`, x0 = – 4
The radius of a circular plate is measured as 12.65 cm instead of the actual length 12.5 cm. find the following in calculating the area of the circular plate:
Relative error
A sphere is made of ice having radius 10 cm. Its radius decreases from 10 cm to 9.8 cm. Find approximations for the following:
Change in the volume
A sphere is made of ice having radius 10 cm. Its radius decreases from 10 cm to 9.8 cm. Find approximations for the following:
Change in the surface area
Show that the percentage error in the nth root of a number is approximately `1/"n"` times the percentage error in the number
Find the differential dy for the following functions:
y = `(1 - 2x)^3/(3 - 4x)`
Find df for f(x) = x2 + 3x and evaluate it for x = 2 and dx = 0.1
Find df for f(x) = x2 + 3x and evaluate it for x = 3 and dx = 0.02
Find Δf and df for the function f for the indicated values of x, Δx and compare:
f(x) = x3 – 2x2, x = 2, Δx = dx = 0.5
Assuming log10 e = 0.4343, find an approximate value of Iog10 1003
The trunk of a tree has a diameter of 30 cm. During the following year, the circumference grew 6 cm. What is the percentage increase in the area of the cross-section of the tree?
In a newly developed city, it is estimated that the voting population (in thousands) will increase according to V(t) = 30 + 12t2 – t3, 0 ≤ t ≤ 8 where t is the time in years. Find the approximate change in voters for the time change from 4 to `4 1/6` years
Choose the correct alternative:
If u(x, y) = `"e"^(x^2 + y^2)`, then `(delu)/(delx)` is equal to
Choose the correct alternative:
Linear approximation for g(x) = cos x at x = `pi/2` is