हिंदी

The vectors from origin to the points A and B are aijka→=2i^-3j^+2k^ and bijkb→=2i^+3j^+k^, respectively, then the area of triangle OAB is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

The vectors from origin to the points A and B are `vec"a" = 2hat"i" - 3hat"j" + 2hat"k"` and `vec"b" = 2hat"i" + 3hat"j" + hat"k"`, respectively, then the area of triangle OAB is ______.

विकल्प

  • 340

  • `sqrt(25)`

  • `sqrt(229)`

  • `1/2sqrt(229)`

MCQ
रिक्त स्थान भरें

उत्तर

The vectors from origin to the points A and B are `vec"a" = 2hat"i" - 3hat"j" + 2hat"k"` and `vec"b" = 2hat"i" + 3hat"j" + hat"k"`, respectively, then the area of triangle OAB is `1/2sqrt(229)`.

Explanation:

Let O be the origin

∴ `vec"OA" = 2hat"i" - 3hat"j" + 2hat"k"`

And `vec"OB" = 2hat"i" + 3hat"j" + hat"k"`

∴ Area of ΔOAB = `1/2|vec"OA" xx vec"OB"|`

= `1/2|(hat"i", hat"j", hat"k"),(2, -3, 2),(2, 3, 1)|`

= `1/2|hat"i"(-3 - 6) -hat"i"(2 - 4) + hat"k"(6 + 6)|`

= `1/2|-9hat"i" + 2hat"j" + 12hat"k"|`

= `1/2sqrt((-9)^2 + (2)^2 + (12)^2`

= `1/2 sqrt(81 + 4 + 144)`

= `1/2 sqrt(229)`

shaalaa.com
Vectors Examples and Solutions
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 10: Vector Algebra - Exercise [पृष्ठ २१७]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 10 Vector Algebra
Exercise | Q 25 | पृष्ठ २१७

संबंधित प्रश्न

Write the value of `vec a .(vecb xxveca)`


If `veca=hati+2hatj-hatk, vecb=2hati+hatj+hatk and vecc=5hati-4hatj+3hatk` then find the value of `(veca+vecb).vec c`


 

If `veca=2hati+hatj+3hatk and vecb=3hati+5hatj-2hatk` ,then find ` |veca xx vecb|`

 

 

A line passing through the point A with position vector `veca=4hati+2hatj+2hatk` is parallel to the vector `vecb=2hati+3hatj+6hatk` . Find the length of the perpendicular drawn on this line from a point P with vector `vecr_1=hati+2hatj+3hatk`

 

If `vecr=xhati+yhatj+zhatk` ,find `(vecrxxhati).(vecrxxhatj)+xy`


Find `veca.(vecbxxvecc), " if " veca=2hati+hatj+3hatk, vecb=-hati+2hatj+hatk  " and " vecc=3hati+hatj+2hatk`


Using vectors find the area of triangle ABC with vertices A(1, 2, 3), B(2, −1, 4) and C(4, 5, −1).


Find the angle between the vectors `vec"a" + vec"b" and  vec"a" -vec"b" if  vec"a" = 2hat"i"-hat"j"+3hat"k" and vec"b" = 3hat"i" + hat"j"-2hat"k", and"hence find a vector perpendicular to both"  vec"a" + vec"b" and vec"a" - vec"b"`.


Find the angle between the vectors `2hat"i" - hat"j" + hat"k"` and `3hat"i" + 4hat"j" - hat"k"`.


If `vec"a" + vec"b" + vec"c"` = 0, show that `vec"a" xx vec"b" = vec"b" xx vec"c" = vec"c" xx vec"a"`. Interpret the result geometrically?


Using vectors, prove that the parallelogram on the same base and between the same parallels are equal in area.


Show that area of the parallelogram whose diagonals are given by `vec"a"` and `vec"b"` is `(|vec"a" xx vec"b"|)/2`. Also find the area of the parallelogram whose diagonals are `2hat"i" - hat"j" + hat"k"` and `hat"i" + 3hat"j" - hat"k"`.


If `vec"a" = hat"i" + hat"j" + hat"k"` and `vec"b" = hat"j" - hat"k"`, find a vector `vec"c"` such that `vec"a" xx vec"c" = vec"b"` and `vec"a"*vec"c"` = 3.


For any vector `vec"a"`, the value of `(vec"a" xx hat"i")^2 + (vec"a" xx hat"j")^2 + (vec"a" xx hat"k")^2` is equal to ______.


If `|vec"a"|` = 10, `|vec"b"|` = 2 and `vec"a".vec"b"` = 12, then value of `|vec"a" xx vec"b"|` is ______.


The vectors `lambdahat"i" + hat"j" + 2hat"k", hat"i" + lambdahat"j" - hat"k"` and `2hat"i" - hat"j" + lambdahat"k"` are coplanar if ______.


If `|vec"a"|` = 4 and −3 ≤ λ ≤ 2, then the range of `|lambdavec"a"|` is ______.


The value of the expression `|vec"a" xx vec"b"|^2 + (vec"a".vec"b")^2` is ______.


If `|vec"a" xx vec"b"|^2 + |vec"a".vec"b"|^2` = 144 and `|vec"a"|` = 4, then `|vec"b"|` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×