हिंदी

The vertices of a triangle are A (1, 4), B (2, 3) and C (1, 6). Find equations of altitudes of ΔΔABC - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

The vertices of a triangle are A (1, 4), B (2, 3) and C (1, 6). Find equations of altitudes of ΔABC

योग

उत्तर


Let AX, BY and CZ be the altitudes through the vertices A, B and C respectively of ΔABC.
Slope of BC = – 3

∴ slope of AX = `1/3`       ...[∵ AX ⊥ BC]
Since, altitude AX passes through (1, 4) and has slope `1/3`
∴ equation of altitude AX is

y – 4 = `1/3(x - 1)`

∴ 3y – 12 = x – 1
∴ x – 3y + 11 = 0
Since, both the points A and C have same x co-ordinates i.e. 1
∴ the points A and C lie on the line x = 1.
AC is parallel to Y-axis and therefore, altitude
BY is parallel to X-axis.
Since, the altitude BY passes through B(2, 3).
∴ the equation of altitude BY is y = 3.
Also, slope of AB = – 1
∴ slope of CZ = 1       ...[∵ CZ ⊥ AB]
Since, altitude CZ passes through (1, 6) and has slope 1
∴ equation of altitude CZ is
∴ y – 6 = 1(x – 1)
∴ x – y + 5 = 0.

shaalaa.com
Equations of Lines in Different Forms
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Locus and Straight Line - Miscellaneous Exercise 5 [पृष्ठ ८०]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Commerce) [English] 11 Standard Maharashtra State Board
अध्याय 5 Locus and Straight Line
Miscellaneous Exercise 5 | Q 15. (d) | पृष्ठ ८०

संबंधित प्रश्न

The vertices of a triangle are A(3, 4), B(2, 0) and C(1, 6). Find the equation of the median AD.


The vertices of a triangle are A(3, 4), B(2, 0) and C(1, 6). Find the equations of the line passing through the mid points of sides AB and BC.


Find the x and y-intercepts of the following line: `(3x)/2 + (2y)/3` = 1


Find the x and y-intercepts of the following line: 2x – 3y + 12 = 0


Find the equations of a line containing the point A(3, 4) and making equal intercepts on the co-ordinate axes.


Find the equations of the altitudes of the triangle whose vertices are A(2, 5), B(6, – 1) and C(– 4, – 3).


Find the slope, x-intercept, y-intercept of the following line : 2x + 3y – 6 = 0


Find the slope, x-intercept, y-intercept of the following line : x + 2y = 0


Write the following equation in ax + by + c = 0 form: y = 2x – 4


Write the following equation in ax + by + c = 0 form: `x/2 + y/4` = 1


Reduce the equation 6x + 3y + 8 = 0 into slope-intercept form. Hence, find its slope.


Find the X-intercept of the line x + 2y – 1 = 0


Find the equation of the line: having slope 5 and containing point A(– 1, 2).


Find the equation of the line passing through the points A(–3, 0) and B(0, 4).


Find the equation of the line: having an inclination 60° and making intercept 4 on the Y-axis.


The vertices of a triangle are A (1, 4), B (2, 3) and C (1, 6). Find equations of the sides


The vertices of a triangle are A (1, 4), B (2, 3) and C (1, 6). Find equations of the medians


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×