Advertisements
Advertisements
प्रश्न
The vertices of a triangle are A (1, 4), B (2, 3) and C (1, 6). Find equations of altitudes of ΔABC
उत्तर
Let AX, BY and CZ be the altitudes through the vertices A, B and C respectively of ΔABC.
Slope of BC = – 3
∴ slope of AX = `1/3` ...[∵ AX ⊥ BC]
Since, altitude AX passes through (1, 4) and has slope `1/3`
∴ equation of altitude AX is
y – 4 = `1/3(x - 1)`
∴ 3y – 12 = x – 1
∴ x – 3y + 11 = 0
Since, both the points A and C have same x co-ordinates i.e. 1
∴ the points A and C lie on the line x = 1.
AC is parallel to Y-axis and therefore, altitude
BY is parallel to X-axis.
Since, the altitude BY passes through B(2, 3).
∴ the equation of altitude BY is y = 3.
Also, slope of AB = – 1
∴ slope of CZ = 1 ...[∵ CZ ⊥ AB]
Since, altitude CZ passes through (1, 6) and has slope 1
∴ equation of altitude CZ is
∴ y – 6 = 1(x – 1)
∴ x – y + 5 = 0.
APPEARS IN
संबंधित प्रश्न
Find the equation of the line passing through the points A(2, 0) and B(3, 4).
The vertices of a triangle are A(3, 4), B(2, 0) and C(1, 6). Find the equations of side BC
Find the x and y-intercepts of the following line: `x/3 + y/2` = 1
Find the x and y-intercepts of the following line: `(3x)/2 + (2y)/3` = 1
Find the x and y-intercepts of the following line: 2x – 3y + 12 = 0
Find the equations of a line containing the point A(3, 4) and making equal intercepts on the co-ordinate axes.
Find the equations of the altitudes of the triangle whose vertices are A(2, 5), B(6, – 1) and C(– 4, – 3).
Find the slope, x-intercept, y-intercept of the following line : x + 2y = 0
Write the following equation in ax + by + c = 0 form: y = 2x – 4
Write the following equation in ax + by + c = 0 form: y = 4
Write the following equation in ax + by + c = 0 form: `x/3 = y/2`
Find the equation of the line whose x-intercept is 3 and which is perpendicular to the line 3x – y + 23 = 0.
Find the equation of the line: having slope 5 and containing point A(– 1, 2).
Find the equation of the line: containing the point (2, 1) and having slope 13.
Find the equation of the line: through the origin which bisects the portion of the line 3x + 2y = 2 intercepted between the co-ordinate axes.
Find the equation of the line: having slope 5 and making intercept 5 on the X−axis.
The vertices of a triangle are A (1, 4), B (2, 3) and C (1, 6). Find equations of the sides