हिंदी

The volume of a cube is increasing at the rate of 8 cm3/s. How fast is the surface area increasing when the length of an edge is 12 cm? - Mathematics

Advertisements
Advertisements

प्रश्न

The volume of a cube is increasing at the rate of 8 cm3/s. How fast is the surface area increasing when the length of an edge is 12 cm?

योग

उत्तर

Let at any instant of time t, the edge of the cube be x, surface area be S and the volume be V, then,

V = x3 and S = 6x2                          ...(i)

Differentiating (i) w.r.t. t, we get

`= (dV)/dt = 3x^2 dx/dt`              ....(ii)

and, `(dS)/dt = 6 (2x) dx/dt`               ....(iii)

`(dV)/dt = 8cm^3 //sec`                   ...(Given)

`= 3x^2 dx/dt = 8 cm^ 3//sec`                 .... (using ii)

`= 3 (12 cm)^2 dx/dt = 8 cm^3// sec`      ....(∴ x= 12 cm)

`= dx/dt = 8/432` cm/sec

`= 1/54` cm/sec

Subsituting this value of `dx/dt` in (iii), we get,

`(dS)/dt = 12 (12 cm) (1/54 cm//sec)`     ....(∵ x = 12 cm)

`= 8/3` cm3/sec

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Application of Derivatives - Exercise 6.1 [पृष्ठ १९७]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 6 Application of Derivatives
Exercise 6.1 | Q 2 | पृष्ठ १९७

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Find the rate of change of the area of a circle with respect to its radius r when r = 3 cm.


The radius of a circle is increasing uniformly at the rate of 3 cm/s. Find the rate at which the area of the circle is increasing when the radius is 10 cm.


A balloon, which always remains spherical has a variable radius. Find the rate at which its volume is increasing with the radius when the later is 10 cm.


The total cost C(x) in rupees associated with the production of x units of an item is given by C(x) = 0.007x3 – 0.003x2 + 15x + 4000. Find the marginal cost when 17 units are produced


The rate of change of the area of a circle with respect to its radius r at r = 6 cm is ______.


The volume of a sphere is increasing at the rate of 8 cm3/s. Find the rate at which its surface area is increasing when the radius of the sphere is 12 cm.


The volume of a sphere is increasing at the rate of 3 cubic centimeter per second. Find the rate of increase of its surface area, when the radius is 2 cm


The total cost C(x) associated with the production of x units of an item is given by C(x) = 0.005x3 – 0.02x2 + 30x + 5000. Find the marginal cost when 3 units are produced, whereby marginal cost we mean the instantaneous rate of change of total cost at any level of output.


Find the rate of change of the volume of a cone with respect to the radius of its base ?


Find the rate of change of the volume of a ball with respect to its radius r. How fast is the volume changing with respect to the radius when the radius is 2 cm?


The total cost C (x) associated with the production of x units of an item is given by C (x) = 0.007x3 − 0.003x2 + 15x + 4000. Find the marginal cost when 17 units are produced ?


A balloon which always remains spherical, is being inflated by pumping in 900 cubic centimetres of gas per second. Find the rate at which the radius of the balloon is increasing when the radius is 15 cm.


A particle moves along the curve y = x2 + 2x. At what point(s) on the curve are the x and y coordinates of the particle changing at the same rate?


A particle moves along the curve y = x3. Find the points on the curve at which the y-coordinate changes three times more rapidly than the x-coordinate.


The surface area of a spherical bubble is increasing at the rate of 2 cm2/s. When the radius of the bubble is 6 cm, at what rate is the volume of the bubble increasing?


A particle moves along the curve y = (2/3)x3 + 1. Find the points on the curve at which the y-coordinate is changing twice as fast as the x-coordinate ?


A ladder, 5 metre long, standing on a horizontal floor, leans against a vertical wall. If the top of the ladder slides down wards at the rate of 10 cm/sec, then find the rate at which the angle between the floor and ladder is decreasing when lower end of ladder is 2 metres from the wall ?


For what values of x is the rate of increase of x3 − 5x2 + 5x + 8 is twice the rate of increase of x ?


The volume of a sphere is increasing at 3 cm3/sec. The rate at which the radius increases when radius is 2 cm, is


If the rate of change of area of a circle is equal to the rate of change of its diameter, then its radius is equal to


The diameter of a circle is increasing at the rate of 1 cm/sec. When its radius is π, the rate of increase of its area is


A cylindrical tank of radius 10 m is being filled with wheat at the rate of 314 cubic metre per hour. Then the depth of the wheat is increasing at the rate of


A 13 m long ladder is leaning against a wall, touching the wall at a certain height from the ground level. The bottom of the ladder is pulled away from the wall, along the ground, at the rate of 2 m/s. How fast is the height on the wall decreasing when the foot of the ladder is 5 m away from the wall?


For the curve y = 5x – 2x3, if x increases at the rate of 2 units/sec, then how fast is the slope of curve changing when x = 3?


Two men A and B start with velocities v at the same time from the junction of two roads inclined at 45° to each other. If they travel by different roads, find the rate at which they are being seperated.


The volume of a cube increases at a constant rate. Prove that the increase in its surface area varies inversely as the length of the side


The radius of a cylinder is increasing at the rate of 3 m/s and its height is decreasing at the rate of 4 m/s. The rate of change of volume when the radius is 4 m and height is 6 m, is ____________.


Let y = f(x) be a function. If the change in one quantity 'y’ varies with another quantity x, then which of the following denote the rate of change of y with respect to x.


What is the rate of change of the area of a circle with respect to its radius when, r = 3 cm


The radius of a circle is increasing uniformly at the rate of 3 cm per second. Find the rate at which the area of the circle is increasing when the radius is 10 cm.


A ladder 5 m long is leaning against a wall. The bottom of the ladder is pulled along the ground, away from the wall, at the rate of 2 cm/s. How fast is its height on the wall decreasing when the foot of the ladder is 4 m away from the wall?


A cylindrical tank of radius 10 feet is being filled with wheat at the rate of 3/4 cubic feet per minute. The then depth of the wheat is increasing at the rate of


A man 1.6 m tall walks at the rate of 0.3 m/sec away from a street light that is 4 m above the ground. At what rate is the tip of his shadow moving? At what rate is his shadow lengthening?


If the circumference of circle is increasing at the constant rate, prove that rate of change of area of circle is directly proportional to its radius.


Given that `1/y + 1/x = 1/12` and y decreases at a rate of 1 cms–1, find the rate of change of x when x = 5 cm and y = 1 cm.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×