हिंदी

The volume of a right circular cone is 9856 cm3. If the diameter of the base is 28 cm, find height of the cone slant height of the cone curved surface area of the cone Assume [Assume π=227] - Mathematics

Advertisements
Advertisements

प्रश्न

The volume of a right circular cone is 9856 cm3. If the diameter of the base is 28 cm, find

  1. height of the cone
  2. slant height of the cone
  3. curved surface area of the cone

`["Assume "pi=22/7]`

योग

उत्तर

(i) Radius of cone = `(28/2) cm` = 14 cm

Let the height of the cone be h.

Volume of cone = 9856 cm3

⇒ `1/3pir^2h` = 9856 cm3

⇒ `[1/3xx22/7xx(14)^2xxh]cm^2` = 9856 cm3

h = 48 cm

Therefore, the height of the cone is 48 cm.

(ii) Slant height (l) of cone = `sqrt(r^2+h^2)`

= `[sqrt(14^2+48^2)]cm`

= `[sqrt(196+2304)]cm`

= 50 cm

Therefore, the slant height of the cone is 50 cm.

(iii) Curved surface area of cone = πrl

= `(22/7xx14xx50)cm^2`

= 2200 cm2

Therefore, the curved surface area of the cone is 2200 cm2.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 13: Surface Area and Volumes - Exercise 13.7 [पृष्ठ २३३]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 9
अध्याय 13 Surface Area and Volumes
Exercise 13.7 | Q 6 | पृष्ठ २३३

वीडियो ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×