हिंदी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान 2nd PUC Class 12

Three capacitors of capacitances 2 pF, 3 pF and 4 pF are connected in parallel. What is the total capacitance of the combination? - Physics

Advertisements
Advertisements

प्रश्न

Three capacitors of capacitances 2 pF, 3 pF and 4 pF are connected in parallel. What is the total capacitance of the combination?

संख्यात्मक

उत्तर

Capacitances of the given capacitors are

C1 = 2 pF

C2 = 3 pF

C3 = 4 pF

For the parallel combination of the capacitors, equivalent capacitor C' is given by the algebraic sum,

C' = 2 + 3 + 4

C' = 9 pF

Therefore, the total capacitance of the combination is 9 pF.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Electrostatic Potential and Capacitance - Exercise [पृष्ठ ८६]

APPEARS IN

एनसीईआरटी Physics [English] Class 12
अध्याय 2 Electrostatic Potential and Capacitance
Exercise | Q 2.7 (a) | पृष्ठ ८६
एनसीईआरटी Physics [English] Class 12
अध्याय 2 Electrostatic Potential and Capacitance
Exercise | Q 7. (a) | पृष्ठ ८७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Three capacitors each of capacitance 9 pF are connected in series.

  1. What is the total capacitance of the combination?
  2. What is the potential difference across each capacitor if the combination is connected to a 120 V supply?

Deduce an expression for equivalent capacitance C when three capacitors C1, C2 and C3 connected in parallel.


Figure 4 below shows a capacitor C, an inductor L and a resistor R, connected in series
to an a.c. supply of 220 V

Calculate:

1) The resonant frequency of the given CLR circuit.

2) Current flowing through·the circuit.

3) Average power consumed by the circuit.


A circuit is set up by connecting inductance L = 100 mH, resistor R = 100 Ω and a capacitor of reactance 200 Ω in series. An alternating emf of \[150\sqrt{2}\]  V, 500/π Hz is applies across this series combination. Calculate the power dissipated in the resistor.


The plates of a parallel-plate  capacitor are given equal positive charges. What will be the potential difference between the plates? What will be the charges on the facing surfaces and on the outer surfaces?


If the capacitors in the previous question are joined in parallel, the capacitance and the breakdown voltage of the combination will be


Find the charges on the four capacitors of capacitances 1 μF, 2 μF, 3 μF and 4 μF shown in the figure.


A capacitor of capacitance 5⋅00 µF is charged to 24⋅0 V and another capacitor of capacitance 6⋅0 µF is charged to 12⋅0 V. (a) Find the energy stored in each capacitor. (b) The positive plate of the first capacitor is now connected to the negative plate of the second and vice versa. Find the new charges on the capacitors. (c) Find the loss of electrostatic energy during the process. (d) Where does this energy go?


Three capacitors of capacitance `C_1 = 3muf` , `C_2 = 6muf` , `C_3 = 10muf` , are connected to a 10V battery as shown in figure 3 below : 

Calculate :

(a) Equivalent capacitance.

(b) Electrostatic potential energy stored in the system 


An ac circuit consists of a series combination of circuit elements X and Y. The current is ahead of the voltage  in phase by `pi /4` . If element X is a pure resistor of 100Ω ,

(a)  name the circuit element Y.
(b)  calculate the rms value of current, if rms value of voltage is  141V.
(c)  what will happen if the ac source is replaced by a dc source ?


The figure shows a network of five capacitors connected to a 100 V supply. Calculate the total energy stored in the network.


Three different capacitors are·connected in series. Then:-


Capacitors connected in series have ______


The equivalent capacitance of the combination shown in the figure is ______.


In the circuit shown in figure, initially K1 is closed and K2 is open. What are the charges on each capacitors.

Then K1 was opened and K2 was closed (order is important), What will be the charge on each capacitor now? [C = 1µF]


The total charge on the system of capacitors C1 = 1 µF, C2 = 2 µF, C3 = 4 µF and C4 = 3 µF connected in parallel is ______. (Assume a battery of 20 V is connected to the combination)


A capacitor of capacity C1 is charged to the potential of V0. On disconnecting with the battery, it is connected with an uncharged capacitor of capacity C2 as shown in the adjoining figure. Find the ratio of energies before and after the connection of switch S.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×