Advertisements
Advertisements
प्रश्न
त्रिज्या 8 cm वाले एक वृत्त के अंतर्गत खींचे जा सकने वाले वर्ग का क्षेत्रफल ______ है।
विकल्प
256 cm2
128 cm2
`64sqrt2` cm2
64 cm2
उत्तर
त्रिज्या 8 cm वाले एक वृत्त के अंतर्गत खींचे जा सकने वाले वर्ग का क्षेत्रफल 128 cm2 है।
स्पष्टीकरण:
दिया गया है, वृत्त की त्रिज्या, r = OC = 8 cm।
∴ वृत्त का व्यास = AC
= 2 × OC
= 2 × 8
= 16 cm
जो एक वर्ग के विकर्ण के बराबर होता है।
मान लीजिए वर्ग की भुजा x है।
समकोण ΔABC में,
AC2 = AB2 + BC2 ...[पाइथागोरस प्रमेय द्वारा]
⇒ (16)2 = x2 + x2
⇒ 256 = 2x2
⇒ x2 = 128
∴ वर्ग का क्षेत्रफल = x2 = 128 cm2
APPEARS IN
संबंधित प्रश्न
दी गई आकृति में, छायांकित भाग का क्षेत्रफल ज्ञात कीजिए, जहाँ भुजा 12 सेमी वाले एक समबाहु त्रिभुज OAB के शीर्ष O को केंद्र मान कर 6 सेमी त्रिज्या वाला एक वृत्तीय चाप खींचा गया है। [उपयोग Π = `22/7`]
भुजा 4 सेमी वाले एक वर्ग के प्रत्येक कोने से 1 सेमी त्रिज्या वाले वृत्त का एक चतुर्थांश काटा गया है तथा बीच में 2 सेमी व्यास का एक वृत भी काटा गया है, जैसा कि आकृति में दर्शाया गया है। वर्ग के शेष भाग का क्षेत्रफल ज्ञात कीजिए। [उपयोग Π = `22/7`]
दी गई आकृति में, ABCD भुजा 14 सेमी वाला एक वर्ग है। A, B, C और D को केंद्र मानकर, चार वृत्त इस प्रकार खींचे गए हैं कि प्रत्येक वृत्त तीन शेष वृत्तों में दो वृत्तों को बाह्य रूप से स्पर्श करता है। छायांकित भाग का क्षेत्रफल ज्ञात कीजिए। [उपयोग Π = 22/7]
एक समबाहु त्रिभुज ABC का क्षेत्रफल 17320.5 वर्ग सेमी है। भुजा के आधे के बराबर की त्रिज्या लेकर एक वृत्त खींचा जाता है। छायांकित भाग का क्षेत्रफल ज्ञात कीजिए। [Use π = 3.14 and `sqrt3 `= 1.73205]
एक वर्गाकार रूमाल पर, नौ वृत्ताकार डिजाइन बने हैं, जिनमें से प्रत्येक की त्रिज्या 7 सेमी है। रूमाल के शेष भाग का क्षेत्रफल ज्ञात कीजिए।
दी गई आकृति में OACB केंद्र O और त्रिज्या 3.5 सेमी वाले एक वृत्त का चतुर्थांस है। यदि OD = 2 सेमी है, तो निम्नलिखित के क्षेत्रफल ज्ञात कीजिए:
- चतुर्थांस OACB
- छायांकित भाग
[उपयोग Π = `22/7`]
दी गई आकृति में, एक चतुर्थांश OPBQ के अंतर्गत एक वर्ग OABC बना हुआ है। यदि OA = 20 सेमी है, तो छायांकित भाग का क्षेत्रफल ज्ञात कीजिए। (Use π = 3.14)
AB और CD केंद्र O तथा त्रिज्याओं 21 सेमी और 7 सेमी वाले दो सकेंद्रीय वृत्तों के क्रमश: दो चाप हैं। यदि ∠AOB = 30° तो छायांकित भाग का क्षेत्रफल ज्ञात कीजिए।
[उपयोग Π = `22/7`]
दी गई आकृति में, ABC त्रिज्या 12 सेमी वाले एक वृत का चतुर्थांश है तथा BC को व्यास मानकर एक अर्धवृत्त्त खींचा गया है। छायांकित भाग का क्षेत्रफल ज्ञात कीजिए। [उपयोग Π = 22/7]
आकुति में, छायांकित क्षेत्र का क्षेत्रफल ज्ञात कीजिए।