हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएसएसएलसी (अंग्रेजी माध्यम) कक्षा १०

Two circles with centres O and O’ of radii 3 cm and 4 cm, respectively intersect at two points P and Q, such that OP and O’P are tangents to the two circles. Find the length of the common chord PQ. - Mathematics

Advertisements
Advertisements

प्रश्न

Two circles with centres O and O’ of radii 3 cm and 4 cm, respectively intersect at two points P and Q, such that OP and O’P are tangents to the two circles. Find the length of the common chord PQ.

योग

उत्तर

In ∆OO’P

(O’O)2 = OP2 + O’P2

= 32 + 42

= 9 + 16

(OO’)2 = 25

∴ OO’ = 5 cm

Since the line joining the centres of two intersecting circles is perpendicular bisector of their common chord.

OR ⊥ PQ and PR = RQ

Let OR be x, then O’R = 5 – x again Let PR = RQ = y cm

In ∆ORP,

OP2 = OR2 + PR2

9 = x2 + y2  ...(1)

In ∆O’RP,

O’P2 = O’R2 + PR2

16 = (5 – x)2 + y2

16 = 25 + x2 – 10x + y2

16 = x2 + y2 + 25 – 10x

16 = 9 + 25 – 10x  ...[From (1)]

16 = 34 – 10x

10x = 34 – 16 = 18

x = `18/10` = 1.8 cm

Substitute the value of x = 1.8 in (1)

9 = (1.8)2 + y2

y2 = 9 – 3.24

y2 = 5.76

y = `sqrt(5.76)` = 2.4 cm

Hence PQ = 2(2.4) = 4.8 cm

Length of the common chord PQ = 4.8 cm

shaalaa.com
Circles and Tangents
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Geometry - Exercise 4.4 [पृष्ठ १९८]

APPEARS IN

सामाचीर कलवी Mathematics [English] Class 10 SSLC TN Board
अध्याय 4 Geometry
Exercise 4.4 | Q 8 | पृष्ठ १९८
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×