हिंदी

Two Long, Straight, Parallel Conductors Carry Steady Currents, I1 and I2, Separated by a Distance D. If the Currents Are Flowing in the Same Direction, Show How the Magnetic Field Set up in One Produces an Attractive Force on the Other? Obtain the Expression for this Force. Hence, Define One Ampere. - Physics

Advertisements
Advertisements

प्रश्न

Two long, straight, parallel conductors carry steady currents, I1 and I2, separated by a distance d. If the currents are flowing in the same direction, show how the magnetic field set up in one produces an attractive force on the other? Obtain the expression for this force. Hence, define one ampere.

उत्तर

Magnetic field induction at some point P on wire 2 due to current Ipassing through wire 1 is given by 

`B_1=(mu_0 2I_1)/(4pid)`

As the current-carrying wire 2 lies in magnetic field produced by wire 1, the unit length of wire 2 will experience a force, which is given by

`F=B_1I_2xx1=(mu_0)/(4pi) (2I_1I_2)/d`

According to Fleming's left-hand rule, the force on wire 2 acts in the plane of paper perpendicular to wire 2, directed towards wire 1. Similarly, wire 1 also experiences the same force towards wire 2. 
Thus, both the conducting wires attract each other with the same force F.

Thus, one ampere can be defined as the amount of current flowing through two parallel conductors (in the same direction or opposite directions) placed at a distance of one metre in a free space, and both the wires attract or repel each other with a force of 2×107 Nm1 per metre of their lengths.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2015-2016 (March) Delhi Set 1

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Seema’s uncle was advised by his doctor to have an MRI (Magnetic Resonance Imaging) scan of his brain. Her uncle felt it to be expensive and wanted to postpone it. When Seema learnt about this, she took the help of her family and also approached the doctor, who also offered a substantial discount. She then convinced her uncle to undergo the test to enable the doctor to know the condition of his brain. The information thus obtained greatly helped the doctor to treat him properly.

Based on the above paragraph, answer the following questions:

(a) What according to you are the values displayed by Seema, her family and the doctor?

(b) What could be the possible reason for MRI test to be so expensive?

(c) Assuming that MRI test was performed using a magnetic field of 0.1 T, find the minimum and maximum values of the force that the magnetic field could exert on a proton (charge = 1.6 x 10-19 C) moving with a speed of 104 m/s.


Deduce the expression for the magnetic field at a point on the axis of a current carrying circular loop of radius ‘R’ distant ‘x’ from the centre. Hence, write the magnetic field at the centre of a loop.


A long straight wire in the horizontal plane carries a current of 50 A in north to south direction. Give the magnitude and direction of B at a point 2.5 m east of the wire.


A straight wire carrying an electric current is placed along the axis of a uniformly charged ring. Will there be a magnetic force on the wire if the ring starts rotating about the wire? If yes, in which direction? 


A particle of charge -16 x 10-18 C moving with velocity 10 m/s along the X-axis enters a region where a magnetic field of induction B is along Y-axis and electric field of magnitude 104 V/m is along the negative Z-axis. If the charged particle continues moving along the X-axis, the magnitude of B is ____________.


Lorentz Force generally refers to ______.


A charge q is moving with a velocity v parallel to a magnetic field B. Force on the charge due to magnetic field is ______.

The phenomenon in which a magnetic field is produced in the space near a conductor carrying current is called ______


A charged particle would continue to move with a constant velocity in a region wherein ______.

  1. E = 0, B ≠ 0.
  2. E ≠ 0, B ≠ 0.
  3. E ≠ 0, B = 0.
  4. E = 0, B = 0.

Two long parallel current-carrying conductors are 0.4 m apart in air and carry currents 5 A and 10 A. Calculate the force per metre on each conductor, if the currents are (a) in the same direction and (b) in the opposite direction.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×