हिंदी

Two particles have the same de Broglie wavelength and one is moving four times as fast as the other. If the slower particle is an α-particle, what are the possibilities for the other particle? - Physics

Advertisements
Advertisements

प्रश्न

Two particles have the same de Broglie wavelength and one is moving four times as fast as the other. If the slower particle is an α-particle, what are the possibilities for the other particle?

संख्यात्मक

उत्तर

Data: λ1 = λ2, v1 = 4v2

λ = `"h"/"p" = "h"/"mv"`

∴ `lambda_1 = "h"/("m"_1"v"_1), lambda_2 = "h"/("m"_2"v"_2)`

As λ1 = λ2, m1v1 = m2v2

∴ `"m"_1 = "m"_2 "v"_2/"v"_1 = "m"_2 (1/4) = "m"_2/4`

As particle 2 is the ex-particle, particle 1 (having the mass `1/4` times that of the a-particle) may be a proton or neutron.

shaalaa.com
De Broglie Hypothesis
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 14: Dual Nature of Radiation and Matter - Exercises [पृष्ठ ३२३]

APPEARS IN

बालभारती Physics [English] 12 Standard HSC Maharashtra State Board
अध्याय 14 Dual Nature of Radiation and Matter
Exercises | Q 15 | पृष्ठ ३२३

संबंधित प्रश्न

An electron, a proton, an α-particle, and a hydrogen atom are moving with the same kinetic energy. The associated de Broglie wavelength will be longest for ______.


State the importance of Davisson and Germer experiment.


What is the speed of a proton having de Broglie wavelength of 0.08 Å?


Explain what you understand by the de Broglie wavelength of an electron. Will an electron at rest have an associated de Broglie wavelength? Justify your answer.


The de Broglie wavelengths associated with an electron and a proton are the same. What will be the ratio of (i) their momenta (ii) their kinetic energies?


According to De-Broglie, the waves are associated with ______ 


Calculate De Broglie's wavelength of the bullet moving with speed 90m/sec and having a mass of 5 gm. 


Explain De Broglie’s Hypothesis.


The momentum of a photon of energy 1 MeV in kg m/s will be ______


The de Broglie wavelength associated with photon is, ____________.


An electron of mass m and a photon have same energy E. The ratio of de-Broglie wavelengths associated with them is ( c being velocity of light) ______.


If the radius of the circular path and frequency of revolution of a particle of mass m are doubled, then the change in its kinetic energy will be (Ei and Ef are the initial and final kinetic energies of the particle respectively.)


A particle of charge q, mass m and energy E has de-Broglie wavelength `lambda.` For a particle of charge 2q, mass 2m and energy 2E, the de-Broglie wavelength is ____________.


How much energy is imparted to an electron so that its de-Broglie wavelength reduces from 10-10 m to 0.5 × 10-10 m? (E =energy of electron)


If '`lambda_1`' and '`lambda_2`' are de-Broglie wavelengths for electrons in first and second Bohr orbits in hydrogen atom, then the ratio '`lambda_2`' to '`lambda_1`' is (E1 = -13.6 eV) ____________.


If the kinetic energy of a particle is increased to 16 times its previous value, the percentage change in the de-Broglie wavelength of the particle is ____________.


Graph shows the variation of de-Broglie wavelength `(lambda)` versus `1/sqrt"V"`, where 'V' is the accelerating potential for four particles carrying same charge but of masses m1 , m2, m3, m4. Which particle has a smaller mass?


According to de-Broglie hypothesis, the ratio of wavelength of an electron and that of photon having same energy 'E' is (m = mass of electron, c = velocity of light) ____________.


A photon of wavelength 3315 Å falls on a photocathode and an electron of energy 3 x 10-19 J is ejected. The threshold wavelength of photon is [Planck's constant (h) = 6.63 x 10-34 J.s, velocity of light (c) = 3 x 108 m/s] ____________.


Explain de-Broglie wavelength.


A proton, a neutron, an electron and an α-particle have same energy. λp, λn, λe and λα are the de Broglie's wavelengths of proton, neutron, electron and α particle respectively, then choose the correct relation from the following :


The energy of an electron having de-Broglie wavelength `λ` is ______.

(h = Plank's constant, m = mass of electron)


An electron of mass m has de-Broglie wavelength λ when accelerated through potential difference V. When proton of mass M, is accelerated through potential difference 9V, the de-Broglie wavelength associated with it will be ______. (Assume that wavelength is determined at low voltage)


Calculate the de Broglie wavelength associated with an electron moving with a speed of `5 xx 10^6` m/s. `(m_e = 9.1 xx 10^(-31)kg)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×