Advertisements
Advertisements
प्रश्न
Use the factor theorem to determine that x - 1 is a factor of x6 - x5 + x4 - x3 + x2 - x + 1.
उत्तर
Let f(x) = x6 - x5 + x4 - x3 + x2 - x + 1 to check whether x - 1 is a factor of x6 - x5 + x4 - x3 + x2 - x + 1 we find f(1).
Put x = 1 in equation (i) we get
f(1) = (1)6 - (1)5 + (1)4 - (1)3 + (1)2 - (1) + 1
= 1 - 1 + 1 - 1 + 1 - 1 + 1
= 4 - 3
= 1.
Since, f(1) ≠ 0, So by factor theorem (x - 1) is not a factor of f(x).
APPEARS IN
संबंधित प्रश्न
Using the Factor Theorem, show that (3x + 2) is a factor of 3x3 + 2x2 – 3x – 2. Hence, factorise the expression 3x3 + 2x2 – 3x – 2 completely.
Use factor theorem to determine whether x + 3 is factor of x 2 + 2x − 3 or not.
By using factor theorem in the following example, determine whether q(x) is a factor p(x) or not.
p(x) = x3 − x2 − x − 1, q(x) = x − 1
Prove that (x - y) is a factor of yz( y2 - z2) + zx( z2 - x2) + xy ( x2 - y2)
Prove that (x-3) is a factor of x3 - x2 - 9x +9 and hence factorize it completely.
Given that x + 2 and x + 3 are factors of 2x3 + ax2 + 7x - b. Determine the values of a and b.
In the following problems use the factor theorem to find if g(x) is a factor of p(x):
p(x) = x3 + x2 + 3x + 175 and g(x) = x + 5.
Show that 2x + 7 is a factor of 2x3 + 5x2 – 11x – 14. Hence factorise the given expression completely, using the factor theorem.
Use factor theorem to factorise the following polynominals completely. x3 – 13x – 12.
If x – 2 is a factor of x3 – kx – 12, then the value of k is ______.