Advertisements
Advertisements
प्रश्न
Using Lagrange’s interpolation formula find a polynominal which passes through the points (0, –12), (1, 0), (3, 6) and (4, 12)
उत्तर
We can construct a table using the given points.
x | 0 | 1 | 3 | 4 |
y | – 12 | 0 | 6 | 12 |
Here x0 = 0
x1 = 1
x2 = 3
x3 = 4
y0 = – 12
y1 = 0
y2 = 6
y3 = 12
= `((x - 0)(x - 3)(x - 4))/((1 - 0)(1 - 3)(1 - 4)) xx 0 +`
= `((x - 0)(x - 1)(x - 4))/((3 - 0)(3 - 1)(3 - 4)) xx 6 + ((x - 0)(x - 1)(x - 3))/((4 - 0)(4 - 1)(4 - 3)) xx 12`
= `((x - 1)(x - 3)(x - 4))/((-1)(-3)(-4)) (-12) + 0 +`
= `((x)(x - 1)(x - 4))/((3)(2)(-1)) xx 6 + ((x)(x - 1)(x - 30))/((4)(3)(1)) xx 12`
= `((x - 1)(x^2 - 7x + 12))/((-12)) (-12) + (x(x^2 - 5x + 4))/(-6) xx (6) + (x(x^2 - 4x + 3))/12 xx 12`
= (x3 – 7x2 + 12x – x2 + 7x – 12) – (x3 – 5x2 + 4x) + (x3 – 4x2 + 3x)
= (x3 – 8x2 + 19x – 12) – (x3 – 5x2 + 4x) + (x3 – 4x2 + 3x)
= x3 – 8x2 + 19x – 12 – x3 + 5x2 – 4x + x3 – 4x2 + 3x
∴ y = x3 – 7x2 + 18x – 12
APPEARS IN
संबंधित प्रश्न
Using Newton’s forward interpolation formula find the cubic polynomial.
x | 0 | 1 | 2 | 3 |
f(x) | 1 | 2 | 1 | 10 |
Find the value of f(x) when x = 32 from the following table:
x | 30 | 5 | 40 | 45 | 50 |
f(x) | 15.9 | 14.9 | 14.1 | 13.3 | 12.5 |
Using interpolation, find the value of f(x) when x = 15
x | 3 | 7 | 11 | 19 |
f(x) | 42 | 43 | 47 | 60 |
Choose the correct alternative:
For the given points (x0, y0) and (x1, y1) the Lagrange’s formula is
Choose the correct alternative:
For the given data find the value of Δ3y0 is
x | 5 | 6 | 9 | 11 |
y | 12 | 13 | 15 | 18 |
A second degree polynomial passes though the point (1, –1) (2, –1) (3, 1) (4, 5). Find the polynomial
Find the missing figures in the following table:
x | 0 | 5 | 10 | 15 | 20 | 25 |
y | 7 | 11 | - | 18 | - | 32 |
Find f(0.5) if f(– 1) = 202, f(0) = 175, f(1) = 82 and f(2) = 55
If u0 = 560, u1 = 556, u2 = 520, u4 = 385, show that u3 = 465
From the following table obtain a polynomial of degree y in x.
x | 1 | 2 | 3 | 4 | 5 |
y | 1 | – 1 | 1 | – 1 | 1 |