Advertisements
Advertisements
प्रश्न
Using interpolation, find the value of f(x) when x = 15
x | 3 | 7 | 11 | 19 |
f(x) | 42 | 43 | 47 | 60 |
उत्तर
Here the intervals are unequal
By Lagrange’s in-terpolation formula we have,
x0 = 3
x1 = 7
x2 = 11
x3 = 19
y0 = 42
y1 = 43
y2 = 47
y3 = 60 and x = 15.
y = `"f"(x) = ((x - x_1)(x - x_2)(x - x_3))/((x_0 - x_1)(x_0 - x_2)(x_0 - x_3)) xx y_0 + ((x_0 - x_1)(x - x_2)(x - x_3))/((x_1 - x_0)(x_1 - x_2)(x_1 - x_3)) xx y_1 + ((x - x_0)(x - x_1)(x - x_3))/((x_2 - x_0)(x_2 - x_1)(x_2 - x_3))xx y_2 + ((x - x_0)(x - x_1)(x - x_2))/((x_3- x_0)(x_3 - x_1)(x_3 - x_2)) xx y_3`
y(15) = `"f"(15) = ((15 - 7)(15 - 11)(15 - 19))/((3 - 7)(3 - 11)(3 - 19)) xx 42 + ((15 - 3)(15 - 11)(15 - 19))/((7 - 3)(7 - 11)(7 - 19)) xx 43 + ((15 - 3)(15 - 7)(15 - 19))/((11 - 13)(11 - 7)(11 - 19)) xx 47 + ((15 - 3)(15 - 7)(15 - 11))/((19 - 3)(19 - 7)(19 - 11)) xx 60`
= `((8)(4)(-4))/((-4)(-8)(-4)) xx 42 + ((12)(4)(-4))/((4)(-4)(-12)) xx 43 + ((12) xx (8) xx (-4))/((8) xx (4) xx (-8)) xx 47 + ((12) xx (8) xx (4))/((16) xx (12) xx (8)) xx 60`
= 10.5 – 43 + 70.5 + 15
= 53
APPEARS IN
संबंधित प्रश्न
Using graphic method, find the value of y when x = 48 from the following data:
x | 40 | 50 | 60 | 70 |
y | 6.2 | 7.2 | 9.1 | 12 |
Using Newton’s forward interpolation formula find the cubic polynomial.
x | 0 | 1 | 2 | 3 |
f(x) | 1 | 2 | 1 | 10 |
Find the value of f(x) when x = 32 from the following table:
x | 30 | 5 | 40 | 45 | 50 |
f(x) | 15.9 | 14.9 | 14.1 | 13.3 | 12.5 |
The following data gives the melting point of a alloy of lead and zinc where ‘t’ is the temperature in degree c and P is the percentage of lead in the alloy.
P | 40 | 50 | 60 | 70 | 80 | 90 |
T | 180 | 204 | 226 | 250 | 276 | 304 |
Find the melting point of the alloy containing 84 percent lead.
Find f(2.8) from the following table:
x | 0 | 1 | 2 | 3 |
f(x) | 1 | 2 | 11 | 34 |
A second degree polynomial passes though the point (1, –1) (2, –1) (3, 1) (4, 5). Find the polynomial
Find the missing figures in the following table:
x | 0 | 5 | 10 | 15 | 20 | 25 |
y | 7 | 11 | - | 18 | - | 32 |
Find f(0.5) if f(– 1) = 202, f(0) = 175, f(1) = 82 and f(2) = 55
The area A of circle of diameter ‘d’ is given for the following values
D | 80 | 85 | 90 | 95 | 100 |
A | 5026 | 5674 | 6362 | 7088 | 7854 |
Find the approximate values for the areas of circles of diameter 82 and 91 respectively
From the following table obtain a polynomial of degree y in x.
x | 1 | 2 | 3 | 4 | 5 |
y | 1 | – 1 | 1 | – 1 | 1 |