Advertisements
Advertisements
प्रश्न
The following data gives the melting point of a alloy of lead and zinc where ‘t’ is the temperature in degree c and P is the percentage of lead in the alloy.
P | 40 | 50 | 60 | 70 | 80 | 90 |
T | 180 | 204 | 226 | 250 | 276 | 304 |
Find the melting point of the alloy containing 84 percent lead.
उत्तर
Since the required value is at the end of the table
Apply backward interpolation formula.
To find T at p = 84
`"T"_(("p" = "p"_0 + "nh")) = "T"_"n" + "n"/(1!) ∇"T"_"n" + ("n"("n" + 1))/(2!) ∇^2"T"_0 + ("n"("n" + 1)("n" 2))/(3!) Delta^3"T"_0 + .......`
To find T at P = 84
Pn + nh = 84
90 + n(10) = 84
10n = 84 – 90
10n = – 6
⇒ n = `(-6)/10`
n = – 0.6
P | T | `Delta"T"` | `Delta^2"T"` | `Delta^3"T"` | `Delta^4"T"` | `Delta^5"T"` |
40 | 180 | |||||
24 | ||||||
50 | 204 | – 2 | ||||
22 | 4 | |||||
60 | 226 | 2 | – 4 | |||
24 | 0 | 4 | ||||
70 | 250 | 2 | 0 | |||
26 | 0 | |||||
80 | 276 | 2 | ||||
28 | ||||||
90 | 304 |
`"T"_((84)) = 304 + ((-0.6))/(1!) (28) + ((-0.6)(-0.6 + 1))/(2!) (2)+ ((-0.6)(-0.6 + 1)(-0.6 + 2))/(3!) (0) + ((-0.6)(-0.6 + 1)(-0.6 + 2)(0.6 + 3))/(4!) (0) + ((-0.6)(-0.6 + 1)(-0.6 +2)(-0.6 + 3)(-0.6 + 4))/(5!) (4) +`
= 304 – 16.8 – 0.24 – 0.091392
= 304 – 17.131392
= 286.86
Hence the melting point of the alloy is 286.86°c.
APPEARS IN
संबंधित प्रश्न
Using graphic method, find the value of y when x = 48 from the following data:
x | 40 | 50 | 60 | 70 |
y | 6.2 | 7.2 | 9.1 | 12 |
Using Newton’s forward interpolation formula find the cubic polynomial.
x | 0 | 1 | 2 | 3 |
f(x) | 1 | 2 | 1 | 10 |
The population of a city in a censes taken once in 10 years is given below. Estimate the population in the year 1955.
Year | 1951 | 1961 | 1971 | 1981 |
Population in lakhs |
35 | 42 | 58 | 84 |
Find f(2.8) from the following table:
x | 0 | 1 | 2 | 3 |
f(x) | 1 | 2 | 11 | 34 |
Using interpolation estimate the output of a factory in 1986 from the following data.
Year | 1974 | 1978 | 1982 | 1990 |
Output in 1000 tones |
25 | 60 | 80 | 170 |
Using interpolation, find the value of f(x) when x = 15
x | 3 | 7 | 11 | 19 |
f(x) | 42 | 43 | 47 | 60 |
From the following data find y at x = 43 and x = 84.
x | 40 | 50 | 60 | 70 | 80 | 90 |
y | 184 | 204 | 226 | 250 | 276 | 304 |
The area A of circle of diameter ‘d’ is given for the following values
D | 80 | 85 | 90 | 95 | 100 |
A | 5026 | 5674 | 6362 | 7088 | 7854 |
Find the approximate values for the areas of circles of diameter 82 and 91 respectively
If u0 = 560, u1 = 556, u2 = 520, u4 = 385, show that u3 = 465
Using Lagrange’s interpolation formula find a polynominal which passes through the points (0, –12), (1, 0), (3, 6) and (4, 12)