Advertisements
Advertisements
प्रश्न
Find f(2.8) from the following table:
x | 0 | 1 | 2 | 3 |
f(x) | 1 | 2 | 11 | 34 |
उत्तर
Since the required value is at the end of the table
Apply backward interpolation formula.
x | `(f(x))/y` | `Deltay` | `Delta^2y` | `Delta^3y` |
0 | 1 | |||
1 | ||||
1 | 2 | 8 | ||
9 | 6 | |||
2 | 11 | 14 | ||
23 | ||||
3 | 34 |
`y_((x = x_0 + "nh")) = y_"n" + "n"/(1!) ∇y_"n" + ("n"("n" + 1))/(2!) ∇^2y_"n" + ("n"("n" + 1)("n" + 2))/(3!) Delta^3y_"n" + .........`
To find y at x = 2.8
∴ x0 + nh = 2.8
∴ 3 + n(1) = 2.8
n = 2.8 – 3
n = – 0.2
`y_((x = 2.8)) = 34 + ((-0.2))/(1!) (23) + ((-0.2)(-0.2 + 1))/(2!) (14) + ((-0.2)(-0.2 + 1)(-0.2 + 2))/(3!) (6) +`
= `34 - 4.6 + ((-0.2)(0.8)(14))/2 + ((-0.2)(0.8)(4))/2 + ((-0.2)(-0.8)(1.8))/6 (6)`
= 34 – 4.6 – 1.12 – 0.288
= 34 – 6.008
= 27.992
∴ f(2.8) = 27.992
APPEARS IN
संबंधित प्रश्न
The following data relates to indirect labour expenses and the level of output
Months | Jan | Feb | Mar |
Units of output | 200 | 300 | 400 |
Indirect labour expenses (Rs) |
2500 | 2800 | 3100 |
Months | Apr | May | June |
Units of output | 640 | 540 | 580 |
Indirect labour expenses (Rs) |
3820 | 3220 | 3640 |
Estimate the expenses at a level of output of 350 units, by using graphic method.
Using interpolation estimate the business done in 1985 from the following data
Year | 1982 | 1983 | 1984 | 1986 |
Business done (in lakhs) |
150 | 235 | 365 | 525 |
Using interpolation, find the value of f(x) when x = 15
x | 3 | 7 | 11 | 19 |
f(x) | 42 | 43 | 47 | 60 |
Choose the correct alternative:
For the given points (x0, y0) and (x1, y1) the Lagrange’s formula is
Choose the correct alternative:
Lagrange’s interpolation formula can be used for
Find the missing figures in the following table:
x | 0 | 5 | 10 | 15 | 20 | 25 |
y | 7 | 11 | - | 18 | - | 32 |
Find f(0.5) if f(– 1) = 202, f(0) = 175, f(1) = 82 and f(2) = 55
From the following data find y at x = 43 and x = 84.
x | 40 | 50 | 60 | 70 | 80 | 90 |
y | 184 | 204 | 226 | 250 | 276 | 304 |
From the following table obtain a polynomial of degree y in x.
x | 1 | 2 | 3 | 4 | 5 |
y | 1 | – 1 | 1 | – 1 | 1 |
Using Lagrange’s interpolation formula find a polynominal which passes through the points (0, –12), (1, 0), (3, 6) and (4, 12)