Advertisements
Advertisements
प्रश्न
Using the following data, construct Fisher’s Ideal index and show how it satisfies Factor Reversal Test and Time Reversal Test?
Commodity | Price in Rupees per unit | Number of units | ||
Basic year | Current year | Base year | Current year | |
A | 6 | 10 | 50 | 56 |
B | 2 | 2 | 100 | 120 |
C | 4 | 6 | 60 | 60 |
D | 10 | 12 | 50 | 24 |
E | 8 | 12 | 40 | 36 |
उत्तर
Commodity | Base year | Current year | p0q0 | p0q1 | p1q0 | p1q1 | ||
p0 | q0 | p1 | q1 | |||||
A | 6 | 10 | 50 | 56 | 300 | 336 | 500 | 560 |
B | 2 | 2 | 100 | 120 | 200 | 240 | 200 | 240 |
C | 4 | 6 | 60 | 60 | 240 | 240 | 360 | 360 |
D | 10 | 12 | 50 | 24 | 500 | 240 | 600 | 288 |
E | 8 | 12 | 40 | 36 | 320 | 288 | 480 | 432 |
Total | `sum"p"_0"q"_0` = 1560 | `sum"p"_0"q"_1` = 1344 | `sum"p"_1"q"_0` = 2140 | `sum"p"_1"q"_1` = 1880 |
Fisher’s Price Index Number
`"P"_01^"F" = sqrt((sum"p"_1"q"_0)/(sum"p"_0"q"_0) xx (sum"p"_1"q"_1)/(sum"p"_0"q"_1)) xx 100`
= `sqrt(2140/1560 xx 1880/1344) xx 100`
= `sqrt((40,23,200)/(20,96,640)) xx 100`
= `sqrt(1.92) xx 100`
= `1.385 xx 100`
= 138.5
Time Reversal Test: To prove P01 × P10 = 1
P01 × P10 = `sqrt((sum"p"_1"q"_0 xx sum"p"_1"q"_1)/(sum"p"_0"q"_0 xx sum"p"_0"q"_1)) xx sqrt((sum"p"_0"q"_1 xx sum"p"_0"q"_0)/(sum"p"_1"q"_1 xx sum"p"_1"q"_0))`
= `sqrt(2140/1560 xx 1880/1344 xx 1344/1880 xx 1560/2140)`
P01 × P10 = 1
Time reversal test is satisfied.
Factor Reversal Test: To prove P01 × Q01 = `(sum"p"_1"q"_1)/(sum"p"_0"q"_0)`
= `sqrt((sum"p"_1"q"_0 xx sum"p"_1"q"_1)/(sum"p"_0"q"_0 xx sum"p"_0"q"_1)) xx sqrt((sum"q"_1"P"_0 xx sum"q"_1"P"_1)/(sum"q"_0"p"_0 xx sum"q"_0"p"_1))`
= `sqrt(2140 /1560 xx 1880/1344 xx 1344/1560 xx 188/2140)`
= `sqrt((1880 xx 1880)/(1560 xx 1560)`
= `1880/1560`
⇒ `"P"_01 xx "Q"_01 = (sum"p"_1"q"_1)/(sum"p"_0"q"_0)`
Factor reversal test is satisfied.
APPEARS IN
संबंधित प्रश्न
______ : Base year prices :: P1 : Current year prices
Complete the Correlation:
__________ : Single variable :: Composite index : Group of variables
Identify & explain the concept from the given illustration.
Agricultural Research Institute constructed an index number to measure changes in the production of raw cotton in Maharashtra during the period 2015-2020.
Define Index Number
State the test of adequacy of index number
Explain factor reversal test
Calculate by a suitable method, the index number of price from the following data:
Commodity | 2002 | 2012 | ||
Price | Quantity | Price | Quantity | |
A | 10 | 20 | 16 | 10 |
B | 12 | 34 | 18 | 42 |
C | 15 | 30 | 20 | 26 |
Compute (i) Laspeyre’s (ii) Paasche’s (iii) Fisher’s Index numbers for the 2010 from the following data.
Commodity | Price | Quantity | ||
2000 | 2010 | 2000 | 2010 | |
A | 12 | 14 | 18 | 16 |
B | 15 | 16 | 20 | 15 |
C | 14 | 15 | 24 | 20 |
D | 12 | 12 | 29 | 23 |
Construct the cost of living Index number for 2015 on the basis of 2012 from the following data using family budget method.
Commodity | Price | Weights | |
2012 | 2015 | ||
Rice | 250 | 280 | 10 |
Wheat | 70 | 85 | 5 |
Corn | 150 | 170 | 6 |
Oil | 25 | 35 | 4 |
Dhal | 85 | 90 | 3 |
Calculate the Laspeyre’s, Paasche’s and Fisher’s price index number for the following data. Interpret on the data.
Commodities | Base Year | Current Year | ||
Price | Quantity | Price | Quantity | |
A | 170 | 562 | 72 | 632 |
B | 192 | 535 | 70 | 756 |
C | 195 | 639 | 95 | 926 |
D | 1987 | 128 | 92 | 255 |
E | 1985 | 542 | 92 | 632 |
F | 150 | 217 | 180 | 314 |
7 | 12.6 | 12.7 | 12.5 | 12.8 |
8 | 12.4 | 12.3 | 12.6 | 12.5 |
9 | 12.6 | 12.5 | 12.3 | 12.6 |
10 | 12.1 | 12.7 | 12.5 | 12.8 |