English
Tamil Nadu Board of Secondary EducationHSC Commerce Class 12

Using the following data, construct Fisher’s Ideal index and show how it satisfies Factor Reversal Test and Time Reversal Test? Commodity Price in Rupees per unit Number of units Basic year Current y - Business Mathematics and Statistics

Advertisements
Advertisements

Question

Using the following data, construct Fisher’s Ideal index and show how it satisfies Factor Reversal Test and Time Reversal Test?

Commodity Price in Rupees per unit Number of units
Basic year Current year Base year Current year
A 6 10 50 56
B 2 2 100 120
C 4 6 60 60
D 10 12 50 24
E 8 12 40 36
Chart
Sum

Solution

Commodity Base year Current year p0q0 p0q1 p1q0 p1q1
p0 q0 p1 q1
A 6 10 50 56 300 336 500 560
B 2 2 100 120 200 240 200 240
C 4 6 60 60 240 240 360 360
D 10 12 50 24 500 240 600 288
E 8 12 40 36 320 288 480 432
Total `sum"p"_0"q"_0` = 1560 `sum"p"_0"q"_1` = 1344 `sum"p"_1"q"_0` = 2140 `sum"p"_1"q"_1` = 1880

Fisher’s Price Index Number

`"P"_01^"F" = sqrt((sum"p"_1"q"_0)/(sum"p"_0"q"_0) xx (sum"p"_1"q"_1)/(sum"p"_0"q"_1)) xx 100`

= `sqrt(2140/1560 xx 1880/1344) xx 100`

= `sqrt((40,23,200)/(20,96,640)) xx 100`

= `sqrt(1.92) xx 100`

= `1.385 xx 100`

= 138.5

Time Reversal Test: To prove P01 × P10 = 1

P01 × P10 = `sqrt((sum"p"_1"q"_0 xx sum"p"_1"q"_1)/(sum"p"_0"q"_0 xx sum"p"_0"q"_1)) xx sqrt((sum"p"_0"q"_1 xx sum"p"_0"q"_0)/(sum"p"_1"q"_1 xx sum"p"_1"q"_0))`

= `sqrt(2140/1560 xx 1880/1344 xx 1344/1880 xx 1560/2140)`

P01 × P10 = 1

Time reversal test is satisfied.

Factor Reversal Test: To prove P01 × Q01 = `(sum"p"_1"q"_1)/(sum"p"_0"q"_0)`

= `sqrt((sum"p"_1"q"_0 xx sum"p"_1"q"_1)/(sum"p"_0"q"_0 xx sum"p"_0"q"_1)) xx sqrt((sum"q"_1"P"_0 xx sum"q"_1"P"_1)/(sum"q"_0"p"_0 xx sum"q"_0"p"_1))`

= `sqrt(2140 /1560 xx 1880/1344 xx 1344/1560 xx 188/2140)`

= `sqrt((1880 xx 1880)/(1560 xx 1560)`

= `1880/1560`

⇒ `"P"_01 xx "Q"_01 = (sum"p"_1"q"_1)/(sum"p"_0"q"_0)`

Factor reversal test is satisfied.

shaalaa.com
  Is there an error in this question or solution?
Chapter 9: Applied Statistics - Exercise 9.2 [Page 220]

APPEARS IN

Samacheer Kalvi Business Mathematics and Statistics [English] Class 12 TN Board
Chapter 9 Applied Statistics
Exercise 9.2 | Q 17 | Page 220

RELATED QUESTIONS

Assertion (A): Index numbers are statistical devices.

Reasoning (R): Index numbers measure only changes in the price level over a period of time.


Construct Quantity index number from the given data:

Commodity A B C D E
Base year quantities 170 150 100 195 205
Current year quantities 90 70 75 150 95

Explain factor reversal test


Using Fisher’s Ideal Formula, compute price index number for 1999 with 1996 as base year, given the following:

Year Commodity: A Commodity: B Commodity: C
Price (Rs.) Quantity (kg) Price (Rs.) Quantity (kg) Price (Rs.) Quantity (kg)
1996 5 10 8 6 6 3
1999 4 12 7 7 5 4

Calculate Fisher’s index number to the following data. Also show that it satisfies Time Reversal Test.

Commodity 2016 2017
Price (Rs.) Quantity (kg) Price (Rs.) Quantity (kg)
Food 40 12 65 14
Fuel 72 14 78 20
Clothing 36 10 36 15
Wheat 20 6 42 4
Others 46 8 52 6

Calculate the cost of living index by aggregate expenditure method:

Commodity Weight
2010
Price (Rs.)
2010 2015
P 80 22 25
Q 30 30 45
R 25 42 50
S 40 25 35
T 50 36 52

Choose the correct alternative:

Cost of living at two different cities can be compared with the help of


Assertion and reasoning question:

  • Assertion (A): The index number considers all factors.
  • Reasoning (R): The index number is based on samples.

Choose the correct pair.

Group A Group B
1) Price Index  a) `(sump_1q_1)/(sump_0q_0)xx100`
2) Value Index b) `(sumq_1)/(sumq_0)xx100`
3) Quantity Index  c) `(sump_1q_1)/(sump_0q_1)xx100`
4) Paasche's Index d) `(sump_1)/(sump_0)xx100`

Complete the correlation:

P0 : ______ : : P1 : Current year price.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×