मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी वाणिज्य इयत्ता १२

Using the following data, construct Fisher’s Ideal index and show how it satisfies Factor Reversal Test and Time Reversal Test? Commodity Price in Rupees per unit Number of units Basic year Current y - Business Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Using the following data, construct Fisher’s Ideal index and show how it satisfies Factor Reversal Test and Time Reversal Test?

Commodity Price in Rupees per unit Number of units
Basic year Current year Base year Current year
A 6 10 50 56
B 2 2 100 120
C 4 6 60 60
D 10 12 50 24
E 8 12 40 36
तक्ता
बेरीज

उत्तर

Commodity Base year Current year p0q0 p0q1 p1q0 p1q1
p0 q0 p1 q1
A 6 10 50 56 300 336 500 560
B 2 2 100 120 200 240 200 240
C 4 6 60 60 240 240 360 360
D 10 12 50 24 500 240 600 288
E 8 12 40 36 320 288 480 432
Total `sum"p"_0"q"_0` = 1560 `sum"p"_0"q"_1` = 1344 `sum"p"_1"q"_0` = 2140 `sum"p"_1"q"_1` = 1880

Fisher’s Price Index Number

`"P"_01^"F" = sqrt((sum"p"_1"q"_0)/(sum"p"_0"q"_0) xx (sum"p"_1"q"_1)/(sum"p"_0"q"_1)) xx 100`

= `sqrt(2140/1560 xx 1880/1344) xx 100`

= `sqrt((40,23,200)/(20,96,640)) xx 100`

= `sqrt(1.92) xx 100`

= `1.385 xx 100`

= 138.5

Time Reversal Test: To prove P01 × P10 = 1

P01 × P10 = `sqrt((sum"p"_1"q"_0 xx sum"p"_1"q"_1)/(sum"p"_0"q"_0 xx sum"p"_0"q"_1)) xx sqrt((sum"p"_0"q"_1 xx sum"p"_0"q"_0)/(sum"p"_1"q"_1 xx sum"p"_1"q"_0))`

= `sqrt(2140/1560 xx 1880/1344 xx 1344/1880 xx 1560/2140)`

P01 × P10 = 1

Time reversal test is satisfied.

Factor Reversal Test: To prove P01 × Q01 = `(sum"p"_1"q"_1)/(sum"p"_0"q"_0)`

= `sqrt((sum"p"_1"q"_0 xx sum"p"_1"q"_1)/(sum"p"_0"q"_0 xx sum"p"_0"q"_1)) xx sqrt((sum"q"_1"P"_0 xx sum"q"_1"P"_1)/(sum"q"_0"p"_0 xx sum"q"_0"p"_1))`

= `sqrt(2140 /1560 xx 1880/1344 xx 1344/1560 xx 188/2140)`

= `sqrt((1880 xx 1880)/(1560 xx 1560)`

= `1880/1560`

⇒ `"P"_01 xx "Q"_01 = (sum"p"_1"q"_1)/(sum"p"_0"q"_0)`

Factor reversal test is satisfied.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Applied Statistics - Exercise 9.2 [पृष्ठ २२०]

APPEARS IN

सामाचीर कलवी Business Mathematics and Statistics [English] Class 12 TN Board
पाठ 9 Applied Statistics
Exercise 9.2 | Q 17 | पृष्ठ २२०

संबंधित प्रश्‍न

Index number which is computed from a single variable called is a ______.


Define Index Number


State the test of adequacy of index number


Explain factor reversal test


Discuss about Cost of Living Index Number


The following are the group index numbers and the group weights of an average working class family’s budget. Construct the cost of living index number:

Groups Food Fuel and
Lighting
Clothing Rent Miscellaneous
Index Number  2450 1240 3250 3750 4190
Weight 48 20 12 15 10

Construct the cost of living Index number for 2015 on the basis of 2012 from the following data using family budget method.

Commodity Price Weights
2012 2015
Rice 250 280 10
Wheat 70 85 5
Corn 150 170 6
Oil 25 35 4
Dhal 85 90 3

Using the following data, construct Fisher’s Ideal Index Number and Show that it satisfies Factor Reversal Test and Time Reversal Test?

Commodities Price Quantity
Base Year Current Year Base Year Current Year
Wheat 6 10 50 56
Ghee 2 2 100 120
Firewood 4 6 60 60
Sugar 10 12 30 24
Cloth 8 12 40 36

Choose the correct pair.

Group A Group B
1) Price Index  a) `(sump_1q_1)/(sump_0q_0)xx100`
2) Value Index b) `(sumq_1)/(sumq_0)xx100`
3) Quantity Index  c) `(sump_1q_1)/(sump_0q_1)xx100`
4) Paasche's Index d) `(sump_1)/(sump_0)xx100`

Choose the correct pair :

Group A Group B
1) Price Index a) `(sump_1q_1)/(sump_0q_0) xx100`
2) Value Index

b)

`(sumq_1)/(sumq_0) xx 100`
3) Quantity Index c) `(sump_1q_1)/(sump_0q_1) xx100`
4) Paasche's Index d) `(sump_1)/(sump_0) xx 100`

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×