हिंदी

We would like to prepare a scale whose length does not change with temperature. It is proposed to prepare a unit scale of this type whose length remains, say 10 cm. - Physics

Advertisements
Advertisements

प्रश्न

We would like to prepare a scale whose length does not change with temperature. It is proposed to prepare a unit scale of this type whose length remains, say 10 cm. We can use a bimetallic strip made of brass and iron each of different length whose length (both components) would change in such a way that difference between their lengths remain constant. If αiron = 1.2 × 10−5/K and αbrass = 1.8 × 10−5/K, what should we take as length of each strip?

दीर्घउत्तर

उत्तर

According to the problem, L1 – Lb = 10 cm where,

L1 = length of iron scale

Lb = Length of brass scale

This condition is possible if the change in length of both rods is remain the same at all temperatures.

Change in length of iron rod,

`ΔL = α_IL_IΔT`

Change in length of brass rod,

`ΔL = α_BL_BΔT`

As the change will equal in both the rods, so

`α_IL_IΔT = α_BL_BΔT`

⇒ `α_IL_I = α_BL_B`

⇒ `L_I/L_B = α_B/α_I`

Here, `α_B = 1.8 xx 10^-5 K^-1, α_I = 1.2 xx 10^-5 K^-1`

∴ `L_I/L_B = (1.8 xx 10^-5)/(1.2 xx 10^-5) = 3/2`

`L_I = 3/2 L_B`

As, `L_I - L_B` = 10 cm

∴ `3/2 L_B - L_B` = 10

⇒ `1/2 L_B` = 10

⇒ LB = 20 cm.

shaalaa.com
Heat Transfer - Conduction
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Thermal Properties of Matter - Exercises [पृष्ठ ८२]

APPEARS IN

एनसीईआरटी एक्झांप्लर Physics [English] Class 11
अध्याय 11 Thermal Properties of Matter
Exercises | Q 11.22 | पृष्ठ ८२

संबंधित प्रश्न

A tightly closed metal lid of a glass bottle can be opened more easily if it is put in hot water for some time. Explain.


Two identical rectangular strips, one of copper and the other of steel, are riveted together to form a bimetallic strip (acopper> asteel). On heating, this strip will


Find the ratio of the lengths of an iron rod  and an aluminium rod for which the difference in the lengths is independent of temperature. Coefficients of linear expansion of iron and aluminium are 12 × 10–6 °C–1 and 23 × 10–6 °C–1 respectively.


On a winter day when the atmospheric temperature drops to −10°C, ice forms on the surface of a lake. (a) Calculate the rate of increase of thickness of the ice when 10 cm of the ice is already formed. (b) Calculate the total time taken in forming 10 cm of ice. Assume that the temperature of the entire water reaches 0°C before the ice starts forming. Density of water = 1000 kg m−3, latent heat of fusion of ice = 3.36 × 105 J kg−1and thermal conductivity of ice = 1.7 W m−1°C−1. Neglect the expansion of water of freezing.


A semicircular rod is joined at its end to a straight rod of the same material and the same cross-sectional area. The straight rod forms a diameter of the other rod. The junctions are maintained at different temperatures. Find the ratio of the heat transferred through a cross section of the semicircular rod to the heat transferred through a cross section of the straight rod in a given time.


Steam at 120°C is continuously passed through a 50 cm long rubber tube of inner and outer radii 1.0 cm and 1.2 cm. The room temperature is 30°C. Calculate the rate of heat flow through the walls of the tube. Thermal conductivity of rubber = 0.15 J s−1 m−1°C−1.


Following figure  shows two adiabatic vessels, each containing a mass m of water at different temperatures. The ends of a metal rod of length L, area of cross section A and thermal conductivity K, are inserted in the water as shown in the figure. Find the time taken for the difference between the temperatures in the vessels to become half of the original value. The specific heat capacity of water is s. Neglect the heat capacity of the rod and the container and any loss of heat to the atmosphere.


A calorimeter of negligible heat capacity contains 100 cc of water at 40°C. The water cools to 35°C in 5 minutes. The water is now replaced by K-oil of equal volume at 40°C. Find the time taken for the temperature to become 35°C under similar conditions. Specific heat capacities of water and K-oil are 4200 J kg−1 K−1 and 2100 J kg−1 K−1respectively. Density of K-oil = 800 kg m−3.


According to Stefan’s law of radiation, a black body radiates energy σT4 from its unit surface area every second where T is the surface temperature of the black body and σ = 5.67 × 10–8 W/m2K4 is known as Stefan’s constant. A nuclear weapon may be thought of as a ball of radius 0.5 m. When detonated, it reaches temperature of 106 K and can be treated as a black body.

  1. Estimate the power it radiates.
  2. If surrounding has water at 30°C, how much water can 10% of the energy produced evaporate in 1s?  [Sw = 4186.0 J/kg K and Lv = 22.6 × 105 J/kg]
  3. If all this energy U is in the form of radiation, corresponding momentum is p = U/c. How much momentum per unit time does it impart on unit area at a distance of 1 km?

A cylinder of radius R made of material of thermal conductivity K1 is surrounded by a cylindrical shell of inner radius R and outer radius 3R made of a material of thermal conductivity K2. The two ends of the combined system are maintained at two different temperatures. What is the effective thermal conductivity of the system?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×