Advertisements
Advertisements
प्रश्न
What should be added to 4c(– a + b + c) to obtain 3a(a + b + c) – 2b(a – b + c)?
उत्तर
Let x be added to the given expression
4c(– a + b + c) to obtain 3a(a + b + c) – 2b(a – b + c)
i.e. x + 4c(– a + b + c) = 3a(a + b + c) – 2b(a – b + c)
⇒ x = 3a(a + b + c) – 2b(a – b + c) – 4c(– a + b + c)
= 3a2 + 3ab + 3ac – 2ba + 2b2 – 2bc + 4ca – 4cb – 4c2
⇒ x = 3a2 + ab + 7ac + 2b2 – 6bc – 4c2 ...[Adding the like terms]
APPEARS IN
संबंधित प्रश्न
Simplify (a2 − b2)2
Evaluate the following, using suitable identity
512
If a + b = 5 and a2 + b2 = 13, then ab = ?
Factorise the following, using the identity a2 + 2ab + b2 = (a + b)2.
a2x2 + 2abxy + b2y2
Factorise the following, using the identity a2 + 2ab + b2 = (a + b)2.
16x2 + 40x + 25
Factorise the following, using the identity a2 + 2ab + b2 = (a + b)2.
9x2 + 30x + 25
Factorise the following, using the identity a2 + 2ab + b2 = (a + b)2.
`x^2/4 + 2x + 4`
Factorise the following.
x2 + 9x + 20
If p + q = 12 and pq = 22, then find p2 + q2.
If a + b = 25 and a2 + b2 = 225, then find ab.