Advertisements
Advertisements
प्रश्न
What should be added to 4c(– a + b + c) to obtain 3a(a + b + c) – 2b(a – b + c)?
उत्तर
Let x be added to the given expression
4c(– a + b + c) to obtain 3a(a + b + c) – 2b(a – b + c)
i.e. x + 4c(– a + b + c) = 3a(a + b + c) – 2b(a – b + c)
⇒ x = 3a(a + b + c) – 2b(a – b + c) – 4c(– a + b + c)
= 3a2 + 3ab + 3ac – 2ba + 2b2 – 2bc + 4ca – 4cb – 4c2
⇒ x = 3a2 + ab + 7ac + 2b2 – 6bc – 4c2 ...[Adding the like terms]
APPEARS IN
संबंधित प्रश्न
Use a suitable identity to get the following products.
(a2 + b2) (− a2 + b2)
Use a suitable identity to get the following products.
(6x − 7) (6x + 7)
Simplify (2x +5)2 − (2x − 5)2
Using a2 − b2 = (a + b) (a − b), find 12.12 − 7.92
Expand (5a + 6b)2
Expand `("a"/2+"b"/3)^2`
Expand `("x"+1/2)^2`
(a + b)2 = a2 + b2
Factorise the following, using the identity a2 + 2ab + b2 = (a + b)2.
x2 + 14x + 49
Factorise the following, using the identity a2 + 2ab + b2 = (a + b)2.
4x4 + 12x3 + 9x2