हिंदी

When an Ideal Capacitor is Charged by a Dc Battery, No Current Flows. However, When an Ac Source is Used, the Current Flows Continuously. How Does One Explain This, Based on the Concept of Displa - Physics

Advertisements
Advertisements

प्रश्न

When an ideal capacitor is charged by a dc battery, no current flows. However, when an ac source is used, the current flows continuously. How does one explain this, based on the concept of displacement current?

उत्तर

Ideal capacitor means infinite resistance for dc. When an ac source is used, the current flows continuously, but we know that the capacitor has dielectric (air) between its plates. So, ideally there is no current, and circuit would be incomplete. In real capacitor is charged due to contribution of varying electric field. The current between the capacitor plates is given by displacement current

`D = in E`

`I_d = in (dphi)/(dt) `

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2011-2012 (March) Delhi Set 1

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

A parallel plate capacitor (Figure) made of circular plates each of radius R = 6.0 cm has a capacitance C = 100 pF. The capacitor is connected to a 230 V ac supply with a (angular) frequency of 300 rad s−1.

  1. What is the rms value of the conduction current?
  2. Is the conduction current equal to the displacement current?
  3. Determine the amplitude of B at a point 3.0 cm from the axis between the plates.


The charging current for a capacitor is 0.25 A.  What is the displacement current across its plates?


Without the concept of displacement current it is not possible to correctly apply Ampere’s law on a path parallel to the plates of parallel plate capacitor having capacitance C in ______.


The displacement of a particle from its mean position is given by x = 4 sin (10πt + 1.5π) cos (10πt + 1.5π). The motion of the particle is


A capacitor of capacitance ‘C’, is connected across an ac source of voltage V, given by V = V0 sinωt The displacement current between the plates of the capacitor would then be given by ______.


The charge on a parallel plate capacitor varies as q = q0 cos 2πνt. The plates are very large and close together (area = A, separation = d). Neglecting the edge effects, find the displacement current through the capacitor?


Show that the magnetic field B at a point in between the plates of a parallel-plate capacitor during charging is `(ε_0mu_r)/2 (dE)/(dt)` (symbols having usual meaning).


Sea water at frequency ν = 4 × 108 Hz has permittivity ε ≈ 80 εo, permeability µ ≈ µo and resistivity ρ = 0.25 Ω–m. Imagine a parallel plate capacitor immersed in seawater and driven by an alternating voltage source V(t) = Vo sin (2πνt). What fraction of the conduction current density is the displacement current density?


AC voltage V(t) = 20 sinωt of frequency 50 Hz is applied to a parallel plate capacitor. The separation between the plates is 2 mm and the area is 1 m2. The amplitude of the oscillating displacement current for the applied AC voltage is ______.

[take ε0 = 8.85 × 10-12 F/m]


A parallel plate capacitor is charged to 100 × 10-6 C. Due to radiations, falling from a radiating source, the plate loses charge at the rate of 2 × 10-7 Cs-1. The magnitude of displacement current is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×