Advertisements
Advertisements
प्रश्न
Which of the following collection are sets? Justify your answer:
The collection of difficult topics in mathematics.
उत्तर
The collection of difficult topics in mathematics is not a set because a topic can be easy for one student while difficult for the other student.
APPEARS IN
संबंधित प्रश्न
Identify whether the following is set or not? Justify your answer.
The collection of all months of a year beginning with the letter J.
Identify whether the following is set or not? Justify your answer.
A collection of most dangerous animals of the world.
Write the following set in roster form:
C = {x : x is a two-digit natural number such that the sum of its digits is 8}
Match each of the set on the left in the roster form with the same set on the right described in set-builder form:
(i) | {1, 2, 3, 6} | (a) | {x : x is a prime number and a divisor of 6} |
(ii) | {2, 3} | (b) | {x : x is an odd natural number less than 10} |
(iii) | {M, A, T, H, E, I, C, S} | (c) | {x : x is natural number and divisor of 6} |
(iv) | {1, 3, 5, 7, 9} | (d) | {x : x is a letter of the word MATHEMATICS} |
If A = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10], then insert the appropriate symbol ∈ or ∉ in each of the following blank space:
4 ...... A
List all the elements of the following sets:
\[A = \left\{ x: x^2 \leq 10, x \in Z \right\}\]
List all the elements of the following set:
\[B = \left\{ x: x = \frac{1}{2n - 1}, 1 \leq n \leq 5 \right\}\]
Match each of the sets on the left in the roster form with the same set on the right described in the set-builder form:
(i) | {A, P, L, E} | (i) | x : x + 5 = 5, x ∈ Z |
(ii) | {5, −5} | (ii) | {x : x is a prime natural number and a divisor of 10} |
(iii) | {0} | (iii) | {x : x is a letter of the word "RAJASTHAN"} |
(iv) | {1, 2, 5, 10,} | (iv) | {x: x is a natural number and divisor of 10} |
(v) | {A, H, J, R, S, T, N} | (v) | x : x2 − 25 = 0 |
(vi) | {2, 5} | (vi) | {x : x is a letter of the word "APPLE"} |
Which of the following statement are correct?
Write a correct form of each of the incorrect statements.
\[a \subset \left\{ a, b, c \right\}\]
Which of the following statement are correct?
Write a correct form of each of the incorrect statement.
\[\left\{ a, b \right\} \subset \left\{ a, \left\{ b, c \right\} \right\}\]
Let A = {a, b, {c, d}, e}. Which of the following statement are false and why?
\[\left\{ c, d \right\} \in A\]
Let A = {a, b, {c, d}, e}. Which of the following statements are false and why?
\[\left\{ a, b, e \right\} \in A\]
Write down all possible proper subsets each of the following set:
{1, 2},
Write down all possible proper subsets each of the following set:
{1}.
Let A = {1, 2, 3, 4, 5, 6}. Insert the appropriate symbol ∈ or ∉ in the blank space:
0 ____ A
Describe the following set in Roster form
B = `{x//x "is an integer", -3/2 < x < 9/2}`
Describe the following set in Roster form
C = {x/x = 2n + 1, n ∈ N}
Describe the following set in Set-Builder form
{0}
Write the following interval in Set-Builder form
(2, 5]
Write the following interval in Set-Builder form
[– 3, 4)
Select the correct answer from given alternative.
In a city 20% of the population travels by car, 50% travels by bus and 10% travels by both car and bus. Then, persons travelling by car or bus are
Answer the following:
Write down the following set in set-builder form
{10, 20, 30, 40, 50}
Given that E = {2, 4, 6, 8, 10}. If n represents any member of E, then, write the following sets containing all numbers represented by n2
Write the following sets in the roaster form:
E = `{w | (w - 2)/(w + 3) = 3, w ∈ R}`
If Y = {x | x is a positive factor of the number 2p – 1 (2p – 1), where 2p – 1 is a prime number}.Write Y in the roaster form.
State which of the following statement is true and which is false. Justify your answer.
35 ∈ {x | x has exactly four positive factors}.
Determine whether the following statement is true or false. Justify your answer.
For all sets A, B, and C, A – (B – C) = (A – B) – C
Out of 100 students; 15 passed in English, 12 passed in Mathematics, 8 in Science, 6 in English and Mathematics, 7 in Mathematics and Science; 4 in English and Science; 4 in all the three. Find how many passed in Mathematics and Science but not in English
In a class of 60 students, 25 students play cricket and 20 students play tennis, and 10 students play both the games. Find the number of students who play neither?
In a group of 50 students, the number of students studying French, English, Sanskrit were found to be as follows:
French = 17, English = 13, Sanskrit = 15 French and English = 09, English and Sanskrit = 4 French and Sanskrit = 5, English, French and Sanskrit = 3. Find the number of students who study none of the three languages
In a class of 60 students, 25 students play cricket and 20 students play tennis, and 10 students play both the games. Then, the number of students who play neither is ______.
If sets A and B are defined as A = `{(x, y) | y = 1/x, 0 ≠ x ∈ "R"}` B = {(x, y) | y = – x, x ∈ R}, then ______.
Let S = {x | x is a positive multiple of 3 less than 100}
P = {x | x is a prime number less than 20}. Then n(S) + n(P) is ______.
The set {x ∈ R : 1 ≤ x < 2} can be written as ______.