Advertisements
Advertisements
प्रश्न
Which of the following relationships between the acceleration a and the displacement x of a particle involve simple harmonic motion?
(a) a = 0.7x
(b) a = –200x2
(c) a = –10x
(d) a = 100x3
उत्तर १
A motion represents simple harmonic motion if it is governed by the force law:
F = –kx
ma = –k
`:. a = k/m x`
Where,
F is the force
m is the mass (a constant for a body)
x is the displacement
a is the acceleration
k is a constant
Among the given equations, only equation a = –10 x is written in the above form with `k/m = 10`
Hence, this relation represents SHM.
उत्तर २
Only (c) i.e., a = – 10x represents SHM. This is because acceleration is proportional and opposite to displacement (x).
APPEARS IN
संबंधित प्रश्न
In a damped harmonic oscillator, periodic oscillations have _______ amplitude.
(A) gradually increasing
(B) suddenly increasing
(C) suddenly decreasing
(D) gradually decreasing
Can a pendulum clock be used in an earth-satellite?
A platoon of soldiers marches on a road in steps according to the sound of a marching band. The band is stopped and the soldiers are ordered to break the steps while crossing a bridge. Why?
The displacement of a particle in simple harmonic motion in one time period is
A particle moves on the X-axis according to the equation x = x0 sin2 ωt. The motion is simple harmonic
A pendulum having time period equal to two seconds is called a seconds pendulum. Those used in pendulum clocks are of this type. Find the length of a second pendulum at a place where g = π2 m/s2.
The angle made by the string of a simple pendulum with the vertical depends on time as \[\theta = \frac{\pi}{90} \sin \left[ \left( \pi s^{- 1} \right)t \right]\] .Find the length of the pendulum if g = π2 m2.
A spherical ball of mass m and radius r rolls without slipping on a rough concave surface of large radius R. It makes small oscillations about the lowest point. Find the time period.
The displacement of a particle is represented by the equation `y = 3 cos (pi/4 - 2ωt)`. The motion of the particle is ______.
What is the ratio of maxmimum acceleration to the maximum velocity of a simple harmonic oscillator?