हिंदी

Without using the truth table show that P ↔ q ≡ (p ∧ q) ∨ (~ p ∧ ~ q) - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Without using the truth table show that P ↔ q ≡ (p ∧ q) ∨ (~ p ∧ ~ q)

योग

उत्तर

L.H.S = p ↔ q

≡ (p → q) ∧ (q → p) ........(Biconditional Law)

≡ (∼ p ∨ q) ∧ (∼ q ∨ p) ........(Conditional Law)

≡ [∼ p ∧ (∼ q ∨ p)] ∨ [q ∧ (∼ q ∨ p)] ....(Distributive Law)

≡ [(∼ p ∧ ∼ q)] ∨ (∼ p ∧ p)] ∨ [(q ∧ ∼ q) ∨ (q ∧ p)] .........(Distributive Law)

≡ [(∼ p ∧ ∼ q) ∨ F] ∨ [F ∨ (q ∧ p)] ........(Complement Law)

≡ (∼ p ∧ ∼ q) ∨ (q ∧ p) .......(Identity Law)

≡ (∼ p ∧ ∼ q) ∨ (p ∧ q) ........(Commutative Law)

≡ (p ∧ q) ∨ (∼ p ∧ ∼ q) ........(Commutative Law)

≡ R.H.S.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: Mathematical Logic - Exercise 1.4 [पृष्ठ २१]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 1 Mathematical Logic
Exercise 1.4 | Q 3.1 | पृष्ठ २१

संबंधित प्रश्न

The negation of p ∧ (q → r) is ______________.


Using the rules of negation, write the negatlon of the following: 

(a) p ∧ (q → r)

(b)  ~P ∨ ~q


Write the Truth Value of the Negation of the Following Statement :

The Sun sets in the East. 


Write the truth value of the negation of the following statement : 

cos2 θ + sin2 θ = 1, for all θ ∈ R 


Rewrite the following statement without using if ...... then.

If a man is a judge then he is honest.


Rewrite the following statement without using if ...... then.

It 2 is a rational number then `sqrt2` is irrational number.


Rewrite the following statement without using if ...... then.

It f(2) = 0 then f(x) is divisible by (x – 2).


Without using truth table prove that:

(p ∨ q) ∧ (p ∨ ∼ q) ≡ p


Without using truth table prove that:

(p ∧ q) ∨ (∼ p ∧ q) ∨ (p ∧ ∼ q) ≡ p ∨ q


Without using truth table prove that:

∼ [(p ∨ ∼ q) → (p ∧ ∼ q)] ≡ (p ∨ ∼ q) ∧ (∼ p ∨ q)


Using rules in logic, prove the following:

p ↔ q ≡ ∼(p ∧ ∼q) ∧ ∼(q ∧ ∼p)


Using rules in logic, prove the following:

∼p ∧ q ≡ (p ∨ q) ∧ ∼p


Using rules in logic, prove the following:

∼ (p ∨ q) ∨ (∼p ∧ q) ≡ ∼p


Using the rules in logic, write the negation of the following:

(p ∨ q) ∧ (q ∨ ∼r)


Using the rules in logic, write the negation of the following:

p ∧ (q ∨ r)


Using the rules in logic, write the negation of the following:

(p → q) ∧ r


Using the rules in logic, write the negation of the following:

(∼p ∧ q) ∨ (p ∧ ∼q)


Let p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r). Then, this law is known as ______.


Without using truth table, show that

p ∧ [(~ p ∨ q) ∨ ~ q] ≡ p


Without using truth table, show that

~r → ~ (p ∧ q) ≡ [~ (q → r)] → ~ p


Using the algebra of statement, prove that

(p ∧ q) ∨ (p ∧ ~ q) ∨ (~ p ∧ ~ q) ≡ (p ∨ ~ q)


Using the algebra of statement, prove that

(p ∨ q) ∧ (~ p ∨ ~ q) ≡ (p ∨ ~ q) ∧ (~ p ∨ q)


The statement pattern p ∧ ( q v ~ p) is equivalent to ______.


For any two statements p and q, the negation of the expression (p ∧ ∼q) ∧ ∼p is ______ 


(p → q) ∨ p is logically equivalent to ______ 


The logically equivalent statement of (p ∨ q) ∧ (p ∨ r) is ______ 


The statement pattern p ∧ (∼p ∧ q) is ______.


The statement pattern [∼r ∧ (p ∨ q) ∧ (p ∨ q) ∧ (∼p ∧ q)] is equivalent to ______ 


(p ∧ ∼q) ∧ (∼p ∧ q) is a ______.


The negation of the Boolean expression (r ∧ ∼s) ∨ s is equivalent to: ______ 


The logical statement [∼(q ∨ ∼r) ∨ (p ∧ r)] ∧ (q ∨ p) is equivalent to: ______ 


Without using truth table prove that (p ∧ q) ∨ (∼ p ∧ q) v (p∧ ∼ q) ≡ p ∨ q


Negation of the Boolean expression `p Leftrightarrow (q \implies p)` is ______. 


∼ ((∼ p) ∧ q) is equal to ______.


Without using truth table, prove that:

[p ∧ (q ∨ r)] ∨ [∼r ∧ ∼q ∧ p] ≡ p


Without using truth table, prove that : [(p ∨ q) ∧ ∼p] →q is a tautology.


The statement p → (q → p) is equivalent to ______.


Show that the simplified form of (p ∧ q ∧ ∼ r) ∨ (r ∧ p ∧ q) ∨ (∼ p ∨ q) is q ∨ ∼ p.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×