हिंदी

Using the algebra of statement, prove that (p ∨ q) ∧ (~ p ∨ ~ q) ≡ (p ∨ ~ q) ∧ (~ p ∨ q) - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Using the algebra of statement, prove that

(p ∨ q) ∧ (~ p ∨ ~ q) ≡ (p ∨ ~ q) ∧ (~ p ∨ q)

योग

उत्तर

L.H.S. = (p ∨ q) ∧ (~ p ∨ ~ q)

≡ [p ∧ (~ p ∨ ~ q)] ∨ [q ∧ (~ p ∨ ~ q)]     ...[Distributive law]

≡ [(p ∧ ~ p) ∨ (p ∧ ~ q)] ∨ [(q ∧ ~ p) ∨ (q ∧ ~ q)]        ...[Distributive law]

≡ [c ∨ (p ∧ ~ q)] ∨ [(q ∧ ~ p) ∨ c]        ...[Complement law]

≡ (p ∧ ~ q) ∨ (q ∧ ~ p)      ...[Identity law]

≡ (p ∧ ~ q) ∨ (~ p ∧ q)      ...[Commutative law]

= R.H.S.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: Mathematical Logic - Exercise 1.9 [पृष्ठ २२]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board
अध्याय 1 Mathematical Logic
Exercise 1.9 | Q 2.3 | पृष्ठ २२

संबंधित प्रश्न

The negation of p ∧ (q → r) is ______________.


Using the rules of negation, write the negatlon of the following: 

(a) p ∧ (q → r)

(b)  ~P ∨ ~q


Write the truth value of the negation of the following statement : 

cos2 θ + sin2 θ = 1, for all θ ∈ R 


Rewrite the following statement without using if ...... then.

It 2 is a rational number then `sqrt2` is irrational number.


Rewrite the following statement without using if ...... then.

It f(2) = 0 then f(x) is divisible by (x – 2).


Without using truth table prove that:

(p ∨ q) ∧ (p ∨ ∼ q) ≡ p


Without using truth table prove that:

∼ [(p ∨ ∼ q) → (p ∧ ∼ q)] ≡ (p ∨ ∼ q) ∧ (∼ p ∨ q)


Using rules in logic, prove the following:

p ↔ q ≡ ∼(p ∧ ∼q) ∧ ∼(q ∧ ∼p)


Using rules in logic, prove the following:

∼p ∧ q ≡ (p ∨ q) ∧ ∼p


Using rules in logic, prove the following:

∼ (p ∨ q) ∨ (∼p ∧ q) ≡ ∼p


Using the rules in logic, write the negation of the following:

p ∧ (q ∨ r)


Using the rules in logic, write the negation of the following:

(p → q) ∧ r


Using the rules in logic, write the negation of the following:

(∼p ∧ q) ∨ (p ∧ ∼q)


Let p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r). Then, this law is known as ______.


Without using truth table, show that

p ↔ q ≡ (p ∧ q) ∨ (~p ∧ ~q)


Without using truth table, show that

p ∧ [(~ p ∨ q) ∨ ~ q] ≡ p


Without using truth table, show that

~ [(p ∧ q) → ~ q] ≡ p ∧ q


Without using truth table, show that

~r → ~ (p ∧ q) ≡ [~ (q → r)] → ~ p


Without using truth table, show that

(p ∨ q) → r ≡ (p → r) ∧ (q → r)


Using the algebra of statement, prove that

[p ∧ (q ∨ r)] ∨ [~ r ∧ ~ q ∧ p] ≡ p


Using the algebra of statement, prove that

(p ∧ q) ∨ (p ∧ ~ q) ∨ (~ p ∧ ~ q) ≡ (p ∨ ~ q)


The statement pattern p ∧ ( q v ~ p) is equivalent to ______.


For any two statements p and q, the negation of the expression (p ∧ ∼q) ∧ ∼p is ______ 


(p → q) ∨ p is logically equivalent to ______ 


The negation of p → (~p ∨ q) is ______ 


The negation of the Boolean expression (r ∧ ∼s) ∨ s is equivalent to: ______ 


The logical statement [∼(q ∨ ∼r) ∨ (p ∧ r)] ∧ (q ∨ p) is equivalent to: ______ 


If p ∨ q is true, then the truth value of ∼ p ∧ ∼ q is ______.


The simplified form of [(~ p v q) ∧ r] v [(p ∧ ~ q) ∧ r] is ______.


Without using truth table prove that

[(p ∧ q ∧ ∼ p) ∨ (∼ p ∧ q ∧ r) ∨ (p ∧ q ∧ r) ∨ (p ∧ ∼ q ∧ r) ≡ (p ∨ q) ∧ r


The statement p → (q → p) is equivalent to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×