Advertisements
Advertisements
प्रश्न
Without using truth table, show that
~ [(p ∧ q) → ~ q] ≡ p ∧ q
उत्तर
L.H.S.
≡ ~ [(p ∧ q) → ~ q]
≡ (p ∧ q) ∧ ~ (~ q) ....[Negation of implication]
≡ (p ∧ q) ∧ q .....[Negation of a negation]
≡ p ∧ (q ∧ q) ....[Associative law]
≡ p ∧ q .....[Idempotent law]
≡ R.H.S.
APPEARS IN
संबंधित प्रश्न
If A = {2, 3, 4, 5, 6}, then which of the following is not true?
(A) ∃ x ∈ A such that x + 3 = 8
(B) ∃ x ∈ A such that x + 2 < 5
(C) ∃ x ∈ A such that x + 2 < 9
(D) ∀ x ∈ A such that x + 6 ≥ 9
Write the Truth Value of the Negation of the Following Statement :
The Sun sets in the East.
Write the truth value of the negation of the following statement :
cos2 θ + sin2 θ = 1, for all θ ∈ R
Rewrite the following statement without using if ...... then.
If a man is a judge then he is honest.
Rewrite the following statement without using if ...... then.
It 2 is a rational number then `sqrt2` is irrational number.
Rewrite the following statement without using if ...... then.
It f(2) = 0 then f(x) is divisible by (x – 2).
Without using truth table prove that:
(p ∨ q) ∧ (p ∨ ∼ q) ≡ p
Without using truth table prove that:
(p ∧ q) ∨ (∼ p ∧ q) ∨ (p ∧ ∼ q) ≡ p ∨ q
Using the rules in logic, write the negation of the following:
(p ∨ q) ∧ (q ∨ ∼r)
Using the rules in logic, write the negation of the following:
p ∧ (q ∨ r)
Using the rules in logic, write the negation of the following:
(p → q) ∧ r
Using the rules in logic, write the negation of the following:
(∼p ∧ q) ∨ (p ∧ ∼q)
Let p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r). Then, this law is known as ______.
Without using truth table, show that
p ↔ q ≡ (p ∧ q) ∨ (~p ∧ ~q)
Without using truth table, show that
p ∧ [(~ p ∨ q) ∨ ~ q] ≡ p
Using the algebra of statement, prove that
(p ∨ q) ∧ (~ p ∨ ~ q) ≡ (p ∨ ~ q) ∧ (~ p ∨ q)
The statement pattern p ∧ ( q v ~ p) is equivalent to ______.
The logically equivalent statement of (p ∨ q) ∧ (p ∨ r) is ______
The statement pattern p ∧ (∼p ∧ q) is ______.
(p ∧ ∼q) ∧ (∼p ∧ q) is a ______.
The negation of the Boolean expression (r ∧ ∼s) ∨ s is equivalent to: ______
The logical statement [∼(q ∨ ∼r) ∨ (p ∧ r)] ∧ (q ∨ p) is equivalent to: ______
If p ∨ q is true, then the truth value of ∼ p ∧ ∼ q is ______.
Which of the following is not a statement?
Negation of the Boolean expression `p Leftrightarrow (q \implies p)` is ______.
∼ ((∼ p) ∧ q) is equal to ______.
Without using truth table, prove that:
[p ∧ (q ∨ r)] ∨ [∼r ∧ ∼q ∧ p] ≡ p
Without using truth table, prove that : [(p ∨ q) ∧ ∼p] →q is a tautology.
The simplified form of [(~ p v q) ∧ r] v [(p ∧ ~ q) ∧ r] is ______.
Without using truth table prove that
[(p ∧ q ∧ ∼ p) ∨ (∼ p ∧ q ∧ r) ∨ (p ∧ q ∧ r) ∨ (p ∧ ∼ q ∧ r) ≡ (p ∨ q) ∧ r