English

Using the algebra of statement, prove that (p ∨ q) ∧ (~ p ∨ ~ q) ≡ (p ∨ ~ q) ∧ (~ p ∨ q) - Mathematics and Statistics

Advertisements
Advertisements

Question

Using the algebra of statement, prove that

(p ∨ q) ∧ (~ p ∨ ~ q) ≡ (p ∨ ~ q) ∧ (~ p ∨ q)

Sum

Solution

L.H.S. = (p ∨ q) ∧ (~ p ∨ ~ q)

≡ [p ∧ (~ p ∨ ~ q)] ∨ [q ∧ (~ p ∨ ~ q)]     ...[Distributive law]

≡ [(p ∧ ~ p) ∨ (p ∧ ~ q)] ∨ [(q ∧ ~ p) ∨ (q ∧ ~ q)]        ...[Distributive law]

≡ [c ∨ (p ∧ ~ q)] ∨ [(q ∧ ~ p) ∨ c]        ...[Complement law]

≡ (p ∧ ~ q) ∨ (q ∧ ~ p)      ...[Identity law]

≡ (p ∧ ~ q) ∨ (~ p ∧ q)      ...[Commutative law]

= R.H.S.

shaalaa.com
  Is there an error in this question or solution?
Chapter 1: Mathematical Logic - Exercise 1.9 [Page 22]

APPEARS IN

RELATED QUESTIONS

Without using truth tabic show that ~(p v q)v(~p ∧ q) = ~p


Without using the truth table show that P ↔ q ≡ (p ∧ q) ∨ (~ p ∧ ~ q)


Using the rules of negation, write the negatlon of the following: 

(a) p ∧ (q → r)

(b)  ~P ∨ ~q


Write the truth value of the negation of the following statement : 

cos2 θ + sin2 θ = 1, for all θ ∈ R 


Rewrite the following statement without using if ...... then.

It f(2) = 0 then f(x) is divisible by (x – 2).


Without using truth table prove that:

(p ∨ q) ∧ (p ∨ ∼ q) ≡ p


Without using truth table prove that:

(p ∧ q) ∨ (∼ p ∧ q) ∨ (p ∧ ∼ q) ≡ p ∨ q


Without using truth table prove that:

∼ [(p ∨ ∼ q) → (p ∧ ∼ q)] ≡ (p ∨ ∼ q) ∧ (∼ p ∨ q)


Using rules in logic, prove the following:

∼p ∧ q ≡ (p ∨ q) ∧ ∼p


Using the rules in logic, write the negation of the following:

(p ∨ q) ∧ (q ∨ ∼r)


Using the rules in logic, write the negation of the following:

p ∧ (q ∨ r)


Without using truth table, show that

~ [(p ∧ q) → ~ q] ≡ p ∧ q


Using the algebra of statement, prove that

(p ∧ q) ∨ (p ∧ ~ q) ∨ (~ p ∧ ~ q) ≡ (p ∨ ~ q)


The statement pattern p ∧ ( q v ~ p) is equivalent to ______.


(p → q) ∨ p is logically equivalent to ______ 


The logically equivalent statement of (p ∨ q) ∧ (p ∨ r) is ______ 


The negation of p → (~p ∨ q) is ______ 


The statement pattern [∼r ∧ (p ∨ q) ∧ (p ∨ q) ∧ (∼p ∧ q)] is equivalent to ______ 


The negation of the Boolean expression (r ∧ ∼s) ∨ s is equivalent to: ______ 


The logical statement [∼(q ∨ ∼r) ∨ (p ∧ r)] ∧ (q ∨ p) is equivalent to: ______ 


If p ∨ q is true, then the truth value of ∼ p ∧ ∼ q is ______.


Which of the following is not a statement?


∼ ((∼ p) ∧ q) is equal to ______.


Without using truth table, prove that:

[p ∧ (q ∨ r)] ∨ [∼r ∧ ∼q ∧ p] ≡ p


Without using truth table prove that

[(p ∧ q ∧ ∼ p) ∨ (∼ p ∧ q ∧ r) ∨ (p ∧ q ∧ r) ∨ (p ∧ ∼ q ∧ r) ≡ (p ∨ q) ∧ r


Show that the simplified form of (p ∧ q ∧ ∼ r) ∨ (r ∧ p ∧ q) ∨ (∼ p ∨ q) is q ∨ ∼ p.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×