English

Without using truth tabic show that ~(p v q)v(~p ∧ q) = ~p - Mathematics and Statistics

Advertisements
Advertisements

Question

Without using truth tabic show that ~(p v q)v(~p ∧ q) = ~p

Solution

~(p v q)v(~p ∧ q)

≡~(p v q)v~(p ∨ ~q)                      by De Morgan's Law

≡~[(p ∨ q) ∧ (p ∨ ~q)]                    by De Morgan's Law

≡~{[(p ∨ q) ∧ p] ∨ [(p ∨ q)∧ ~q)]}   by Distributive Law

≡ ~{[p] ∨ [(p ∨ q) ∧ ~q]}               by  Absorption Law

≡ ~{[p] ∨ [(p∧ ~q) ∨ (q ∧ ~q)]}      by Distributive Law

≡~{[p] ∨ [(p ∧ ~q) ∨ F]}                by Complement Law

≡~{[p] ∨ [(p ∧ ~q)]}                     by Identity Law

≡~p ∧ (~p ∨ q)                             by De Morgan's Law

≡ ~p                                           by Absorption Law

shaalaa.com
  Is there an error in this question or solution?
2015-2016 (March)

APPEARS IN

RELATED QUESTIONS

The negation of p ∧ (q → r) is ______________.


Without using the truth table show that P ↔ q ≡ (p ∧ q) ∨ (~ p ∧ ~ q)


Write the truth value of the negation of the following statement : 

cos2 θ + sin2 θ = 1, for all θ ∈ R 


Rewrite the following statement without using if ...... then.

If a man is a judge then he is honest.


Rewrite the following statement without using if ...... then.

It 2 is a rational number then `sqrt2` is irrational number.


Without using truth table prove that:

(p ∨ q) ∧ (p ∨ ∼ q) ≡ p


Without using truth table prove that:

(p ∧ q) ∨ (∼ p ∧ q) ∨ (p ∧ ∼ q) ≡ p ∨ q


Without using truth table prove that:

∼ [(p ∨ ∼ q) → (p ∧ ∼ q)] ≡ (p ∨ ∼ q) ∧ (∼ p ∨ q)


Using rules in logic, prove the following:

∼p ∧ q ≡ (p ∨ q) ∧ ∼p


Using the rules in logic, write the negation of the following:

(p ∨ q) ∧ (q ∨ ∼r)


Using the rules in logic, write the negation of the following:

p ∧ (q ∨ r)


Using the rules in logic, write the negation of the following:

(p → q) ∧ r


Let p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r). Then, this law is known as ______.


Without using truth table, show that

p ∧ [(~ p ∨ q) ∨ ~ q] ≡ p


Without using truth table, show that

~ [(p ∧ q) → ~ q] ≡ p ∧ q


Without using truth table, show that

~r → ~ (p ∧ q) ≡ [~ (q → r)] → ~ p


Without using truth table, show that

(p ∨ q) → r ≡ (p → r) ∧ (q → r)


Using the algebra of statement, prove that

[p ∧ (q ∨ r)] ∨ [~ r ∧ ~ q ∧ p] ≡ p


Using the algebra of statement, prove that

(p ∧ q) ∨ (p ∧ ~ q) ∨ (~ p ∧ ~ q) ≡ (p ∨ ~ q)


Using the algebra of statement, prove that

(p ∨ q) ∧ (~ p ∨ ~ q) ≡ (p ∨ ~ q) ∧ (~ p ∨ q)


The statement pattern p ∧ ( q v ~ p) is equivalent to ______.


(p → q) ∨ p is logically equivalent to ______ 


The logically equivalent statement of (p ∨ q) ∧ (p ∨ r) is ______ 


The statement pattern p ∧ (∼p ∧ q) is ______.


The statement pattern [∼r ∧ (p ∨ q) ∧ (p ∨ q) ∧ (∼p ∧ q)] is equivalent to ______ 


(p ∧ ∼q) ∧ (∼p ∧ q) is a ______.


The negation of the Boolean expression (r ∧ ∼s) ∨ s is equivalent to: ______ 


The logical statement [∼(q ∨ ∼r) ∨ (p ∧ r)] ∧ (q ∨ p) is equivalent to: ______ 


Without using truth table prove that (p ∧ q) ∨ (∼ p ∧ q) v (p∧ ∼ q) ≡ p ∨ q


If p ∨ q is true, then the truth value of ∼ p ∧ ∼ q is ______.


Negation of the Boolean expression `p Leftrightarrow (q \implies p)` is ______. 


∼ ((∼ p) ∧ q) is equal to ______.


Without using truth table, prove that:

[p ∧ (q ∨ r)] ∨ [∼r ∧ ∼q ∧ p] ≡ p


Without using truth table, prove that : [(p ∨ q) ∧ ∼p] →q is a tautology.


The simplified form of [(~ p v q) ∧ r] v [(p ∧ ~ q) ∧ r] is ______.


Without using truth table prove that

[(p ∧ q ∧ ∼ p) ∨ (∼ p ∧ q ∧ r) ∨ (p ∧ q ∧ r) ∨ (p ∧ ∼ q ∧ r) ≡ (p ∨ q) ∧ r


Show that the simplified form of (p ∧ q ∧ ∼ r) ∨ (r ∧ p ∧ q) ∨ (∼ p ∨ q) is q ∨ ∼ p.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×