Advertisements
Advertisements
प्रश्न
`(x/2 + y + z/3)^3 + (x/2 + (2y)/3 + z)^3 + (-(5x)/6 - y/3 - (4z)/3)^3`
उत्तर
Let `(x/2 + y + z/3) = a, (x/3 - (2y)/3 + z) = b, (-(5x)/6 - y/3 - (4z)/3) = c`
`a + b + c = x/2 + y + z/3 + x/3 - (2y)/3 + z - (5x)/6 - y/3 - (4z)/3`
`a + b + c = (x/2 + x/3 - (5x)/6) + (y - (2y)/3 - y/3) + (z/3 + z - (4z)/3)`
`a + b + c = (3x)/6 + (2x)/6 - (5x)/6 + (3y)/3 - (2y)/3 - y/3 + z/3 + (3z)/3 - (4z)/3`
`a + b + c = (5x - 5x)/6 + (3y - 3y)/3 + (4z - 4z)/3`
a + b + c = 0
∵ a + b + c = 0 `∴ a^3 + b^3 + c^3 = 3abc`
`∴ [x/2 + y + z/3]^3 + [x/3 - (2y)/3 + z]^3 + [-(5x)/6 - y/3 - (4z)/3]^3 = 3(x/2 + y + z/3)(x/3 - (2y)/3 + z)(-(5x)/6 - y/3 - (4z)/3)`
APPEARS IN
संबंधित प्रश्न
`2sqrt2a^3 + 3sqrt3b^3 + c^3 - 3 sqrt6abc`
Multiply: x2 + 4y2 + z3 + 2xy + xz − 2yz by x − 2y − z
Evaluate: (8 - 12x + 7x2 - 6x3)(5 - 2x)
Divide: 6x3 + 5x2 − 21x + 10 by 3x − 2
Divide: 2m3n5 by - mn
Find the average (A) of four quantities p, q, r and s. If A = 6, p = 3, q = 5 and r = 7; find the value of s.
Solve the following equation.
3y + 4 = 5y − 6
In a polynomial, the exponents of the variables are always ______.
Match Column I with Column II in the following:
Column I | Column II |
1. The difference of 3 and a number squared | (a) 4 – 2x |
2. 5 less than twice a number squared | (b) n2 – 3 |
3. Five minus twice the square of a number | (c) 2n2 – 5 |
4. Four minus a number multiplied by 2 | (d) 5 – 2n2 |
5. Seven times the sum of a number and 1 | (e) 3 – n2 |
6. A number squared plus 6 | (f) 2(n + 6) |
7. 2 times the sum of a number and 6 | (g) 7(n + 1) |
8. Three less than the square of a number | (h) n2 + 6 |
Express the following properties with variables x, y and z.
Commutative property of addition