Advertisements
Advertisements
प्रश्न
यदि a और b भिन्न-भिन्न पूर्णांक हों, तो सिद्ध कीजिए कि an – bn का एक गुणनखंड (a – b) है, जबकि n एक धन पूर्णांक है।
[ संकेत: an = (a – b + b)n लिखकर प्रसार कीजिए।]
उत्तर
यह साबित करने के लिए कि (a – b) (an – bn) का एक गुणनखंड है, यह साबित करना होगा कि an – bn = k (a – b), जहां k कुछ प्राकृतिक संख्या है।
इसे लिखा जा सकता है कि, a = a – b + b
∴ an = (a - b + b)n = [(a - b) + b]n
= nC0 (a - b)n + nC1 (a - b)n - 1 b + ... + nCn- 1 (a - b)bn - 1 + nCnbn
= (a - b)n + nC1 (a - b)n - 1 + b + ... + nCn - 1 (a - b) bn - 1+ bn
= an - bn = (a - b)[(a - b)n - 1+nC1(a - b)n - 2 b + ... + nCn - 1 bn - 1]
= an - bn = k (a - b)
जहाँ, k = [(a - b)n - 1 + nC1(a - b)n - 2 b + ... + nCn - 1bn - 1] एक प्राकृतिक संख्या है
इससे पता चलता है कि (a - b) (an - bn) का एक गुणनखंड है, जहाँ n एक धन पूर्णांक है।
APPEARS IN
संबंधित प्रश्न
व्यंजक का प्रसार ज्ञात कीजिए: (1 – 2x)5
व्यंजक का प्रसार ज्ञात कीजिए - `(x/3 + 1/x)^5`
व्यंजक का प्रसार कीजिए: `(x + 1/x)^6`
द्विपद प्रमेय का प्रयोग करके निम्नलिखित का मान ज्ञात कीजिए
(96)3
द्विपद प्रमेय का प्रयोग करके निम्नलिखित का मान ज्ञात कीजिए
(102)5
द्विपद प्रमेय का प्रयोग करके निम्नलिखित का मान ज्ञात कीजिए
(101)4
द्विपद प्रमेय का प्रयोग करके निम्नलिखित का मान ज्ञात कीजिए
(99)5
द्विपद प्रमेय का प्रयोग करते हुए बताइए कौन-सी संख्या बड़ी है - (1.1)10000 या 1000
(x + 1)6 + (x – 1)6 का मान ज्ञात कीजिए। इसका प्रयोग करके या अन्यथा `(sqrt2 + 1)^6 + (sqrt2 -1)^6` का मान ज्ञात कीजिए।
दिखाइए कि 9n+1 – 8n – 9, 64 से विभाज्य है जहाँ n एक धन पूर्णांक है।
सिद्ध कीजिए कि `sum_(r=0)^n 3^r ""^nC_r = 4^n`
यदि (a + b)n के प्रसार में प्रथम तीन पद क्रमशः 729, 7290 तथा 30375 हों तो a, b तथा n ज्ञात कीजिए।
यदि (3 + ax)9 के प्रसार में x2 और x3 के गुणांक समान हों, तो a का मान ज्ञात कीजिए।
द्विपद प्रमेय का प्रयोग करते हुए गुणनफल (1 + 2x)6 (1 – x)7 में x5 का गुणांक ज्ञात कीजिए।
`(sqrt3 +sqrt2)^6 - (sqrt3 - sqrt2)^6` का मान ज्ञात कीजिए।
`(a^2 + sqrt(a^2 - 1))^4 + (a^2 - sqrt(a^2 -1))^4` का मान ज्ञात कीजिए।
(0.99)5 के प्रसार के पहले तीन पदों का प्रयोग करते हुए इसका निकटतम मान ज्ञात कीजिए।
`(1+ x/2 - 2/x)^4, x != 0` का द्विपद प्रमेय द्वारा प्रसार ज्ञात कीजिए।
(3x2 – 2ax + 3a2)3 का द्विपद प्रमेय से प्रसार ज्ञात कीजिए।