मराठी

यदि a और b भिन्न-भिन्न पूर्णांक हों, तो सिद्ध कीजिए कि an – bn का एक गुणनखंड (a – b) है, जबकि n एक धन पूर्णांक है। [ संकेत: an = (a – b + b)n लिखकर प्रसार कीजिए।] - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

यदि a और b भिन्न-भिन्न पूर्णांक हों, तो सिद्ध कीजिए कि an – bn का एक गुणनखंड (a – b) है, जबकि n एक धन पूर्णांक है।

[ संकेत: an = (a – b + b)n लिखकर प्रसार कीजिए।]

बेरीज

उत्तर

यह साबित करने के लिए कि (a – b) (an – bn) का एक गुणनखंड है, यह साबित करना होगा कि an – bn = k (a – b), जहां k कुछ प्राकृतिक संख्या है।

इसे लिखा जा सकता है कि, a = a – b + b

∴ an = (a - b + b)n = [(a - b) + b]n

= nC0 (a - b)n + nC1 (a - b)n - 1 b + ... + nCn- 1 (a - b)bn - 1 + nCnbn

= (a - b)n + nC1 (a - b)n - 1 + b + ... + nCn - 1 (a - b) bn - 1+ bn

= an - bn = (a - b)[(a - b)n - 1+nC1(a - b)n - 2 b + ... + nCn - 1 bn - 1]

= an - bn = k (a - b)

जहाँ, k = [(a - b)n - 1 + nC1(a - b)n - 2 b + ... + nCn - 1bn - 1] एक प्राकृतिक संख्या है

इससे पता चलता है कि (a - b) (an - bn) का एक गुणनखंड है, जहाँ n एक धन पूर्णांक है।

shaalaa.com
धन पूर्णांकों के लिए द्विपद प्रमेय
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: द्विपद प्रमेय - अध्याय 8 पर विविध प्रश्नावली [पृष्ठ १८८]

APPEARS IN

एनसीईआरटी Mathematics [Hindi] Class 11
पाठ 8 द्विपद प्रमेय
अध्याय 8 पर विविध प्रश्नावली | Q 4. | पृष्ठ १८८

संबंधित प्रश्‍न

व्यंजक का प्रसार ज्ञात कीजिए: (1 – 2x)5


व्यंजक का प्रसार ज्ञात कीजिए - `(2/x - x/2)^5`


व्यंजक का प्रसार ज्ञात कीजिए: (2x – 3)6


द्विपद प्रमेय का प्रयोग करके निम्नलिखित का मान ज्ञात कीजिए

(96)3


द्विपद प्रमेय का प्रयोग करके निम्नलिखित का मान ज्ञात कीजिए

(102)5


द्विपद प्रमेय का प्रयोग करके निम्नलिखित का मान ज्ञात कीजिए

(101)4


द्विपद प्रमेय का प्रयोग करके निम्नलिखित का मान ज्ञात कीजिए

(99)5


(a + b)4 – (a – b)4  का विस्तार कीजिए। इसका प्रयोग करके `(sqrt3 + sqrt2)^4 - (sqrt3 - sqrt2)^4` का मान ज्ञात कीजिए।


दिखाइए कि 9n+1 – 8n – 9, 64 से विभाज्य है जहाँ n एक धन पूर्णांक है।


सिद्ध कीजिए कि `sum_(r=0)^n 3^r  ""^nC_r = 4^n`


यदि (a + b)n के प्रसार में प्रथम तीन पद क्रमशः 729, 7290 तथा 30375 हों तो a, b तथा n ज्ञात कीजिए।


यदि (3 + ax)9 के प्रसार में x2 और x3 के गुणांक समान हों, तो a का मान ज्ञात कीजिए।


`(sqrt3  +sqrt2)^6 - (sqrt3 - sqrt2)^6` का मान ज्ञात कीजिए।


`(a^2 + sqrt(a^2 - 1))^4 + (a^2 - sqrt(a^2 -1))^4`  का मान ज्ञात कीजिए।


(0.99)5 के प्रसार के पहले तीन पदों का प्रयोग करते हुए इसका निकटतम मान ज्ञात कीजिए।


 `(1+ x/2 - 2/x)^4, x != 0`  का द्विपद प्रमेय द्वारा प्रसार ज्ञात कीजिए।


 (3x2 – 2ax + 3a2)3 का द्विपद प्रमेय से प्रसार ज्ञात कीजिए।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×