Advertisements
Advertisements
प्रश्न
(3x2 – 2ax + 3a2)3 का द्विपद प्रमेय से प्रसार ज्ञात कीजिए।
उत्तर
द्विपद प्रमेय का उपयोग करके, दिए गए व्यंजक (3x* -2ax +3a* ) का विस्तार किया जा सकता है
[3x2 - a (2x - 3a)]3
= 3C0 (3x2 - 2ax)3 + 3C1(3x2 - 2ax)2 (3a2)+ 3C2(3x2 - 2ax) (3a2)2 + 3C3(3a2)3
= (3x2 - 2ax)3 + 3(9x4 - 12ax3 + 4a2x2)(3a2)+3(3x2 - 2ax)(9a4) + 27a6
= (3x2 - 2ax)3 + 81a2x4 - 108a3x3 + 36a4x2 + 81a4x2 - 54a5x + 27a6
= (3x2 - 2ax)3 + 81a2x4 - 108a3x3 + 117a4x2 - 54a5x + 27a6
पुनः, द्विपद प्रमेय का उपयोग करके, हम प्राप्त करते हैं
(3x2 - 2ax)3
= 3C0 (3X2)3 - 3C1 (3X2)2 (2ax) + 3C2 (3X2)(2ax)2 - 3C3 (2ax)3
= 27x6 - 3(9x4) (2ax) + 3 (3x2) (4a2x2) -8a3x3
= 27x6 - 54ax5 + 36a2x4 - 8a3x3
(1) और (2) से, हम प्राप्त करते हैं
(3x2 - 2ax + 3a2)3
= 27x6 - 54ax5 + 36a2 x4 - 8a3x3 + 81a2x4 - 108a3x3 + 117a4 x2 - 54a5x + 27a6
= 27x6 - 54ax5 + 117a2 x4 - 116a3 x3 + 117a4 x2 - 54a5x + 27a6
APPEARS IN
संबंधित प्रश्न
व्यंजक का प्रसार ज्ञात कीजिए - `(2/x - x/2)^5`
व्यंजक का प्रसार ज्ञात कीजिए: (2x – 3)6
व्यंजक का प्रसार ज्ञात कीजिए - `(x/3 + 1/x)^5`
व्यंजक का प्रसार कीजिए: `(x + 1/x)^6`
द्विपद प्रमेय का प्रयोग करके निम्नलिखित का मान ज्ञात कीजिए
(96)3
द्विपद प्रमेय का प्रयोग करके निम्नलिखित का मान ज्ञात कीजिए
(102)5
द्विपद प्रमेय का प्रयोग करके निम्नलिखित का मान ज्ञात कीजिए
(101)4
द्विपद प्रमेय का प्रयोग करते हुए बताइए कौन-सी संख्या बड़ी है - (1.1)10000 या 1000
(a + b)4 – (a – b)4 का विस्तार कीजिए। इसका प्रयोग करके `(sqrt3 + sqrt2)^4 - (sqrt3 - sqrt2)^4` का मान ज्ञात कीजिए।
(x + 1)6 + (x – 1)6 का मान ज्ञात कीजिए। इसका प्रयोग करके या अन्यथा `(sqrt2 + 1)^6 + (sqrt2 -1)^6` का मान ज्ञात कीजिए।
दिखाइए कि 9n+1 – 8n – 9, 64 से विभाज्य है जहाँ n एक धन पूर्णांक है।
यदि (3 + ax)9 के प्रसार में x2 और x3 के गुणांक समान हों, तो a का मान ज्ञात कीजिए।
यदि a और b भिन्न-भिन्न पूर्णांक हों, तो सिद्ध कीजिए कि an – bn का एक गुणनखंड (a – b) है, जबकि n एक धन पूर्णांक है।
[ संकेत: an = (a – b + b)n लिखकर प्रसार कीजिए।]
`(sqrt3 +sqrt2)^6 - (sqrt3 - sqrt2)^6` का मान ज्ञात कीजिए।
`(a^2 + sqrt(a^2 - 1))^4 + (a^2 - sqrt(a^2 -1))^4` का मान ज्ञात कीजिए।
(0.99)5 के प्रसार के पहले तीन पदों का प्रयोग करते हुए इसका निकटतम मान ज्ञात कीजिए।
`(1+ x/2 - 2/x)^4, x != 0` का द्विपद प्रमेय द्वारा प्रसार ज्ञात कीजिए।