English

(3x2 – 2ax + 3a2)3 का द्विपद प्रमेय से प्रसार ज्ञात कीजिए। - Mathematics (गणित)

Advertisements
Advertisements

Question

 (3x2 – 2ax + 3a2)3 का द्विपद प्रमेय से प्रसार ज्ञात कीजिए।

Sum

Solution

द्विपद प्रमेय का उपयोग करके, दिए गए व्यंजक (3x* -2ax +3a* ) का विस्तार किया जा सकता है

[3x2 - a (2x - 3a)]3

= 3C0 (3x2 - 2ax)3 + 3C1(3x2 - 2ax)2 (3a2)+ 3C2(3x2 - 2ax) (3a2)2 + 3C3(3a2)3

= (3x2 - 2ax)3 + 3(9x4 - 12ax3 + 4a2x2)(3a2)+3(3x2 - 2ax)(9a4) + 27a6

= (3x2 - 2ax)3 + 81a2x4 - 108a3x3 + 36a4x2 + 81a4x2 - 54a5x + 27a6

= (3x2 - 2ax)3 + 81a2x4 - 108a3x3 + 117a4x2 - 54a5x + 27a6

पुनः, द्विपद प्रमेय का उपयोग करके, हम प्राप्त करते हैं

(3x2 - 2ax)3

= 3C0 (3X2)3 - 3C1 (3X2)2 (2ax) + 3C2 (3X2)(2ax)2 - 3C3 (2ax)3

= 27x6 - 3(9x4) (2ax) + 3 (3x2) (4a2x2) -8a3x3

= 27x6 - 54ax5 + 36a2x4 - 8a3x3

(1) और (2) से, हम प्राप्त करते हैं

(3x2 - 2ax + 3a2)3

= 27x6 - 54ax5 + 36a2 x4 - 8a3x3 + 81a2x4 - 108a3x3  + 117a4 x2 - 54a5x + 27a6

= 27x6 - 54ax5 + 117a2 x4 - 116a3 x3 + 117a4 x2 - 54a5x + 27a6

shaalaa.com
धन पूर्णांकों के लिए द्विपद प्रमेय
  Is there an error in this question or solution?
Chapter 8: द्विपद प्रमेय - अध्याय 8 पर विविध प्रश्नावली [Page 188]

APPEARS IN

NCERT Mathematics [Hindi] Class 11
Chapter 8 द्विपद प्रमेय
अध्याय 8 पर विविध प्रश्नावली | Q 10. | Page 188

RELATED QUESTIONS

व्यंजक का प्रसार ज्ञात कीजिए: (1 – 2x)5


व्यंजक का प्रसार ज्ञात कीजिए - `(2/x - x/2)^5`


व्यंजक का प्रसार ज्ञात कीजिए: (2x – 3)6


व्यंजक का प्रसार ज्ञात कीजिए - `(x/3 + 1/x)^5`


द्विपद प्रमेय का प्रयोग करके निम्नलिखित का मान ज्ञात कीजिए

(96)3


द्विपद प्रमेय का प्रयोग करके निम्नलिखित का मान ज्ञात कीजिए

(101)4


द्विपद प्रमेय का प्रयोग करके निम्नलिखित का मान ज्ञात कीजिए

(99)5


द्विपद प्रमेय का प्रयोग करते हुए बताइए कौन-सी संख्या बड़ी है - (1.1)10000 या 1000


(a + b)4 – (a – b)4  का विस्तार कीजिए। इसका प्रयोग करके `(sqrt3 + sqrt2)^4 - (sqrt3 - sqrt2)^4` का मान ज्ञात कीजिए।


(x + 1)6 + (x – 1)6 का मान ज्ञात कीजिए। इसका प्रयोग करके या अन्यथा `(sqrt2 + 1)^6 + (sqrt2 -1)^6` का मान ज्ञात कीजिए।


दिखाइए कि 9n+1 – 8n – 9, 64 से विभाज्य है जहाँ n एक धन पूर्णांक है।


सिद्ध कीजिए कि `sum_(r=0)^n 3^r  ""^nC_r = 4^n`


यदि (a + b)n के प्रसार में प्रथम तीन पद क्रमशः 729, 7290 तथा 30375 हों तो a, b तथा n ज्ञात कीजिए।


यदि (3 + ax)9 के प्रसार में x2 और x3 के गुणांक समान हों, तो a का मान ज्ञात कीजिए।


यदि a और b भिन्न-भिन्न पूर्णांक हों, तो सिद्ध कीजिए कि an – bn का एक गुणनखंड (a – b) है, जबकि n एक धन पूर्णांक है।

[ संकेत: an = (a – b + b)n लिखकर प्रसार कीजिए।]


(0.99)5 के प्रसार के पहले तीन पदों का प्रयोग करते हुए इसका निकटतम मान ज्ञात कीजिए।


 `(1+ x/2 - 2/x)^4, x != 0`  का द्विपद प्रमेय द्वारा प्रसार ज्ञात कीजिए।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×