English

दिखाइए कि 9n+1 – 8n – 9, 64 से विभाज्य है जहाँ n एक धन पूर्णांक है। - Mathematics (गणित)

Advertisements
Advertisements

Question

दिखाइए कि 9n+1 – 8n – 9, 64 से विभाज्य है जहाँ n एक धन पूर्णांक है।

Sum

Solution

हमें सिद्ध करना होगा कि 9n + 1 - 8n - 9 = 64k

∴ 9 n+1 - 8n - 9 = (8 + 1)n+ 1 - 8n - 9     [रखने पर 9 = 8 + 1]

= \[\ce{[^{n + 1}C_0 8^{n + 1} + ... + ^{n + 1}C_{n-2} 8^3 + ^{n + 1} C_{n - 1} 8^2 + ^{n + 1} C_n 8 + ^{n + 1}C_{n + 1}] - 8n - 9}\]

= \[\ce{^{n + 1} C_0 8 ^{n + 1} + ... + ^{n + 1}C_{n - 2} 8^3 + ^{n + 1}C_{n - 1}8^2 + (n + 1) 8 + 1 - 8n - 9}\]

= \[\ce{^{n + 1}C_0 8 ^{n + 1} + ... + ^{n + 1}C_{n - 2}8^3  + ^{n + 1}C_{n - 1}8^2 + 8n + 8 + 1 - 8n - 9}\]

= \[\ce{^{n + 1}C_0 8^{n + 1} + ... + ^{n + 1}C_{n - 2}8^3 + ^{n + 1}C_{n - 1}8^2}\]

= \[\ce{8^2 [^{n + 1}C_0 8^{n - 1} + ... + ^{n + 1}C_{n - 2} 8 + ^{n + 1}C_{n - 1}]}\]

= 64k [जहाँ, k = n + 1C0 8n - 1 + .... + n + 1Cn - 1]

इसलिए,  9n + 1 - 8n - 9 से विभाज्य है, जब n एक धन पूर्णांक है।

shaalaa.com
धन पूर्णांकों के लिए द्विपद प्रमेय
  Is there an error in this question or solution?
Chapter 8: द्विपद प्रमेय - प्रश्नावली 8.1 [Page 180]

APPEARS IN

NCERT Mathematics [Hindi] Class 11
Chapter 8 द्विपद प्रमेय
प्रश्नावली 8.1 | Q 13. | Page 180

RELATED QUESTIONS

व्यंजक का प्रसार ज्ञात कीजिए: (1 – 2x)5


व्यंजक का प्रसार ज्ञात कीजिए - `(2/x - x/2)^5`


व्यंजक का प्रसार ज्ञात कीजिए: (2x – 3)6


व्यंजक का प्रसार ज्ञात कीजिए - `(x/3 + 1/x)^5`


व्यंजक का प्रसार कीजिए: `(x + 1/x)^6`


द्विपद प्रमेय का प्रयोग करके निम्नलिखित का मान ज्ञात कीजिए

(96)3


द्विपद प्रमेय का प्रयोग करके निम्नलिखित का मान ज्ञात कीजिए

(102)5


द्विपद प्रमेय का प्रयोग करके निम्नलिखित का मान ज्ञात कीजिए

(101)4


द्विपद प्रमेय का प्रयोग करके निम्नलिखित का मान ज्ञात कीजिए

(99)5


द्विपद प्रमेय का प्रयोग करते हुए बताइए कौन-सी संख्या बड़ी है - (1.1)10000 या 1000


(a + b)4 – (a – b)4  का विस्तार कीजिए। इसका प्रयोग करके `(sqrt3 + sqrt2)^4 - (sqrt3 - sqrt2)^4` का मान ज्ञात कीजिए।


(x + 1)6 + (x – 1)6 का मान ज्ञात कीजिए। इसका प्रयोग करके या अन्यथा `(sqrt2 + 1)^6 + (sqrt2 -1)^6` का मान ज्ञात कीजिए।


यदि (a + b)n के प्रसार में प्रथम तीन पद क्रमशः 729, 7290 तथा 30375 हों तो a, b तथा n ज्ञात कीजिए।


द्विपद प्रमेय का प्रयोग करते हुए गुणनफल (1 + 2x)6 (1 – x)7 में x5 का गुणांक ज्ञात कीजिए।


यदि a और b भिन्न-भिन्न पूर्णांक हों, तो सिद्ध कीजिए कि an – bn का एक गुणनखंड (a – b) है, जबकि n एक धन पूर्णांक है।

[ संकेत: an = (a – b + b)n लिखकर प्रसार कीजिए।]


`(sqrt3  +sqrt2)^6 - (sqrt3 - sqrt2)^6` का मान ज्ञात कीजिए।


(0.99)5 के प्रसार के पहले तीन पदों का प्रयोग करते हुए इसका निकटतम मान ज्ञात कीजिए।


 `(1+ x/2 - 2/x)^4, x != 0`  का द्विपद प्रमेय द्वारा प्रसार ज्ञात कीजिए।


 (3x2 – 2ax + 3a2)3 का द्विपद प्रमेय से प्रसार ज्ञात कीजिए।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×