Advertisements
Advertisements
Question
(a + b)4 – (a – b)4 का विस्तार कीजिए। इसका प्रयोग करके `(sqrt3 + sqrt2)^4 - (sqrt3 - sqrt2)^4` का मान ज्ञात कीजिए।
Solution
द्विपद प्रमेय का उपयोग करते हुए, अभिव्यक्ति, (a + b)4 और (a – b)4 को इस प्रकार विस्तारित किया जा सकता है
`(a + b)^4 = ^4C_0 a^4 + ^4C_1 a^3 b + ^4C_2 a^2b^2 + ^4C_3 ab^3 + ^4C_4 b^4`
(a - b)4 = 4C0 a4 - 4C1 a3b + 4C2 a2b2 - 4C3 ab3 + 4C4b4
∴ `(a + b)^4 - (a - b)^4 = ^4C_0 a^4 + ^4C_1 a^3 b + ^4C_2 a^2b^2 + ^4C_3 ab^3 + ^4C_4 b^4`
[4C0 a4 - 4C1 a3b + 4C2 a2b2 - 4C3 ab3 + 4C4 b4]
2 (4C1a3b + 4C3ab3) = 2(4a3b + 4ab3)
= 8ab (a2 + b2)
इसमें, `a = sqrt3 , b = sqrt2` रखने पर
`(sqrt3 + sqrt2)^4 - (sqrt3 - sqrt2)^4`
= `8sqrt3. sqrt2 [(sqrt3)^2 + (sqrt2)^2]`
= `8sqrt6 (3 + 2) = 40sqrt6`
APPEARS IN
RELATED QUESTIONS
व्यंजक का प्रसार ज्ञात कीजिए: (1 – 2x)5
व्यंजक का प्रसार ज्ञात कीजिए - `(2/x - x/2)^5`
व्यंजक का प्रसार ज्ञात कीजिए - `(x/3 + 1/x)^5`
व्यंजक का प्रसार कीजिए: `(x + 1/x)^6`
द्विपद प्रमेय का प्रयोग करके निम्नलिखित का मान ज्ञात कीजिए
(96)3
द्विपद प्रमेय का प्रयोग करके निम्नलिखित का मान ज्ञात कीजिए
(102)5
द्विपद प्रमेय का प्रयोग करके निम्नलिखित का मान ज्ञात कीजिए
(99)5
द्विपद प्रमेय का प्रयोग करते हुए बताइए कौन-सी संख्या बड़ी है - (1.1)10000 या 1000
(x + 1)6 + (x – 1)6 का मान ज्ञात कीजिए। इसका प्रयोग करके या अन्यथा `(sqrt2 + 1)^6 + (sqrt2 -1)^6` का मान ज्ञात कीजिए।
दिखाइए कि 9n+1 – 8n – 9, 64 से विभाज्य है जहाँ n एक धन पूर्णांक है।
यदि (a + b)n के प्रसार में प्रथम तीन पद क्रमशः 729, 7290 तथा 30375 हों तो a, b तथा n ज्ञात कीजिए।
यदि (3 + ax)9 के प्रसार में x2 और x3 के गुणांक समान हों, तो a का मान ज्ञात कीजिए।
द्विपद प्रमेय का प्रयोग करते हुए गुणनफल (1 + 2x)6 (1 – x)7 में x5 का गुणांक ज्ञात कीजिए।
यदि a और b भिन्न-भिन्न पूर्णांक हों, तो सिद्ध कीजिए कि an – bn का एक गुणनखंड (a – b) है, जबकि n एक धन पूर्णांक है।
[ संकेत: an = (a – b + b)n लिखकर प्रसार कीजिए।]
`(sqrt3 +sqrt2)^6 - (sqrt3 - sqrt2)^6` का मान ज्ञात कीजिए।
`(a^2 + sqrt(a^2 - 1))^4 + (a^2 - sqrt(a^2 -1))^4` का मान ज्ञात कीजिए।
(0.99)5 के प्रसार के पहले तीन पदों का प्रयोग करते हुए इसका निकटतम मान ज्ञात कीजिए।
`(1+ x/2 - 2/x)^4, x != 0` का द्विपद प्रमेय द्वारा प्रसार ज्ञात कीजिए।
(3x2 – 2ax + 3a2)3 का द्विपद प्रमेय से प्रसार ज्ञात कीजिए।