मराठी

(a2+a2-1)4+(a2-a2-1)4 का मान ज्ञात कीजिए। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

`(a^2 + sqrt(a^2 - 1))^4 + (a^2 - sqrt(a^2 -1))^4`  का मान ज्ञात कीजिए।

बेरीज

उत्तर

सबसे पहले, द्विपद प्रमेय का उपयोग करके व्यंजक (x + y)4 + (x – y)4 को सरल बनाया गया है।

(x + y)4 = 4C0x4 + 4C1x3y + 4C2x2y2 + 4C3xy3 + 4C4y4

= x4 + 4x3y + 6x2y2 + 4xy3 + y4

(x - y)4 = 4C0x4 - 4C1x3y + 4C2 x2y2 - 4C3xy3 + 4C4y4

= x4 - 4x3y + 6x2y2 - 4xy3 + y4

∴ (x + y)4 + (x - y)4 = 2(x4 + 6x2 y2 + y4)

x = a2 और y = `sqrt(a^2 - 1)` रखने पर, हमें प्राप्त होता है

`a^2  + sqrt((a^2 - 1)^4)  +  a^2  - sqrt((a^2 - 1)^4)  = 2[(a^2)^4   + 6 (a^2)^2  sqrt((a^2 - 1)^2)  + sqrt(a^2  - 1)^4]`

= `2[a^8  + 6a^4  (a^2 - 1)  + (a^2  - 1)^2]`

= `2[a^8  +  6a^6  - 6a^4  + a^4  - 2a^2  + 1]`

= `2[a^8  + 6a^6 - 5a^4  - 2a^2 + 1]`

= `2a^8  + 12a^6 - 10a^4 - 4a^2  + 2`

shaalaa.com
धन पूर्णांकों के लिए द्विपद प्रमेय
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: द्विपद प्रमेय - अध्याय 8 पर विविध प्रश्नावली [पृष्ठ १८८]

APPEARS IN

एनसीईआरटी Mathematics [Hindi] Class 11
पाठ 8 द्विपद प्रमेय
अध्याय 8 पर विविध प्रश्नावली | Q 6. | पृष्ठ १८८

संबंधित प्रश्‍न

व्यंजक का प्रसार ज्ञात कीजिए: (2x – 3)6


व्यंजक का प्रसार ज्ञात कीजिए - `(x/3 + 1/x)^5`


व्यंजक का प्रसार कीजिए: `(x + 1/x)^6`


द्विपद प्रमेय का प्रयोग करके निम्नलिखित का मान ज्ञात कीजिए

(96)3


द्विपद प्रमेय का प्रयोग करके निम्नलिखित का मान ज्ञात कीजिए

(102)5


द्विपद प्रमेय का प्रयोग करके निम्नलिखित का मान ज्ञात कीजिए

(101)4


द्विपद प्रमेय का प्रयोग करके निम्नलिखित का मान ज्ञात कीजिए

(99)5


द्विपद प्रमेय का प्रयोग करते हुए बताइए कौन-सी संख्या बड़ी है - (1.1)10000 या 1000


(a + b)4 – (a – b)4  का विस्तार कीजिए। इसका प्रयोग करके `(sqrt3 + sqrt2)^4 - (sqrt3 - sqrt2)^4` का मान ज्ञात कीजिए।


(x + 1)6 + (x – 1)6 का मान ज्ञात कीजिए। इसका प्रयोग करके या अन्यथा `(sqrt2 + 1)^6 + (sqrt2 -1)^6` का मान ज्ञात कीजिए।


दिखाइए कि 9n+1 – 8n – 9, 64 से विभाज्य है जहाँ n एक धन पूर्णांक है।


सिद्ध कीजिए कि `sum_(r=0)^n 3^r  ""^nC_r = 4^n`


यदि (a + b)n के प्रसार में प्रथम तीन पद क्रमशः 729, 7290 तथा 30375 हों तो a, b तथा n ज्ञात कीजिए।


यदि (3 + ax)9 के प्रसार में x2 और x3 के गुणांक समान हों, तो a का मान ज्ञात कीजिए।


द्विपद प्रमेय का प्रयोग करते हुए गुणनफल (1 + 2x)6 (1 – x)7 में x5 का गुणांक ज्ञात कीजिए।


यदि a और b भिन्न-भिन्न पूर्णांक हों, तो सिद्ध कीजिए कि an – bn का एक गुणनखंड (a – b) है, जबकि n एक धन पूर्णांक है।

[ संकेत: an = (a – b + b)n लिखकर प्रसार कीजिए।]


(0.99)5 के प्रसार के पहले तीन पदों का प्रयोग करते हुए इसका निकटतम मान ज्ञात कीजिए।


 `(1+ x/2 - 2/x)^4, x != 0`  का द्विपद प्रमेय द्वारा प्रसार ज्ञात कीजिए।


 (3x2 – 2ax + 3a2)3 का द्विपद प्रमेय से प्रसार ज्ञात कीजिए।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×