हिंदी

यदि aa→ कोई शुन्येतर सदिश है तो aiiajjakk(a→.i^)i^+(a→.j^)j^+(a→.k^)k^ ______ के बराबर है। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

यदि `vec"a"` कोई शुन्येतर सदिश है तो `(vec"a" .hat"i")hat"i" + (vec"a".hat"j")hat"j" + (vec"a".hat"k")hat"k"` ______ के बराबर है।

रिक्त स्थान भरें

उत्तर

यदि `vec"a"` कोई शुन्येतर सदिश है तो `(vec"a" .hat"i")hat"i" + (vec"a".hat"j")hat"j" + (vec"a".hat"k")hat"k"`  `underline(vec"a")`  के बराबर है।

व्याख्या:

माना `vec"a" = "a"_1hat"i" + "a"_2hat"j" + "a"_3hat"k"`

∴ `vec"a"*hat"i" = ("a"_1hat"i" + "a"_2hat"j" + "a"_3hat"k") * hat"i"`

इसी तरह, `vec"a" * hat"j" = "a"_2` और `vec"a" * hat"k" = "a"_3`

∴ `(vec"a" * hat"i")*hat"i" + (vec"a" * hat"j")hat"j" + (vec"a" * hat"k")*hat"k" = "a"_1hat"i" + "a"_2hat"j" + "a"_3hat"k" = vec"a"`

इसलिए, भराव का मान `vec"a"` है।

shaalaa.com
सदिश बीजगणित
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 10: सदिश बीजगणित - प्रश्नावली [पृष्ठ २१३]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
अध्याय 10 सदिश बीजगणित
प्रश्नावली | Q 40 | पृष्ठ २१३

संबंधित प्रश्न

यदि बिंदु P और Q क्रमश: (1, 3, 2) और (-1, 0, 8) है, तो `vec"PQ"`, के विपरीत दिशा में परिमाण 11 का एक सदिश ज्ञात कीजिए।


P और Q दो बिंदुओं के स्थिति सदिश क्रमश: `vec"OP" = 2vec"a" + vec"b"` और `vec"OQ" = vec"a" - 2vec"b"` हैं। एक ऐसे बिंदु R का स्थिति सदिश ज्ञात कीजिए जो PQ को 1:2 के अनुपात में बाहयत: विभाजित करता है।


यदि बिंदु (-1, -1, 2), (2, m, 5) और (3, 11, 6) सरेखी, हैं तो m का मान ज्ञात कीजिए।


यदि `vec"a" = 2hat"i" - hat"j" + hat"k", vec"b" = hat"i" + hat"j" - 2hat"k"`  और `vec"c" = hat"i" + 3hat"j" - hat"k"`, का वह मान ज्ञात कीजिए जिससे `vec"a"` सदिश `lambdavec"b" + vec"c"` पर लंब हो।


सदिशों के प्रयोग द्वारा सिद्ध कीजिए कि cos (A – B) = cosA cosB + sinA sinB


सदिश `6vec"i" + 2vec"j" + 3vec"k"` का परिमाण है


उस बिंदु का स्थिति सदिश, जो दो बिंदुओं, जिनके स्थिति सदिश क्रमश: `vec"a" + vec"b"` और 2`vec"a" + vec"b"` हैं, को 1:2 के अनुपात में विभाजित करता है,


 सदिश `vec"i" - vec"j"` और सदिश `vec"j" - vec"k"` के बीच का कोण है


यदि `|vec"a"| = 8, |vec"b"| = 3` और `|vec"a" xx vec"b"| = 12` है, तो `vec"a"*vec"b"` बराबर है


सदिश `vec"a" = 2hat"i" - hat"j" + hat"k"` का सदिश `vec"b" = hat"i" - 2hat"j" + 2hat"k"` के अनुदिश प्रक्षेप बराबर है


एक मात्रक सदिश जो सदिशों `hat"i" - hat"j"` और `hat"i" + hat"j"` दोनों के लंबवत है तथा एक दक्षिणावर्ती पद्धति को निर्मित करने वाला सदिश है।


यदि `|vec"a"|` = 3  और –1 ≤ k ≤ 2, है तो `|"k"vec"a"|` निम्नलिखित में से किस अंतराल में है? 


सदिश `vec"a" = 2hat"i" - hat"j" + hat"k"` और `vec"b" = 2hat"j" + hat"k"` के योग के अनुदिश मात्रक सदिश ज्ञात कीजिए।


सदिशों के प्रयोग से k का मान ज्ञात कीजिए ताकि बिंदु (k, -10, 3), (1, -1, 3) और(3, 5, 3) संरेखी हों।


यदि `vec"a" + vec"b" + vec"c"` = 0, तो सिद्ध कीजिए कि `vec"a" xx vec"b" = vec"b" xx vec"c" = vec"c" xx vec"a"` इस परिणाम का ज्यामितीय विमोचन कीजिए।


सदिशों के प्रयोग से त्रिभुज ABC का क्षेत्रफल ज्ञात कीजिए यदि जिसके शीर्ष A (1, 2, 3), B (2, -1, 4) और C (4, 5, -1) है।


सिद्ध कीजिए कि किसी त्रिभुज ABC में cos A = `("b"^2 + "c"^2 - "a"^2)/(2"bc")`, होता है जहाँ a, b, c क्रमशः शीषों A, B, C, की सम्मुख भुजाओं के परिमाण हैं।


सदिश `hat"i" - 2hat"j" + 2hat"k"` की दिशा में परिमाण 9 वाला सदिश है


सदिश जिसका प्रारंभिक और अंतिम बिंदु क्रमश: (2, 5, 0) और (-3, 7, 4) है निम्नलिखित है


मूल बिंदु से A और B बिंदुओं के सदिश क्रमश: `vec"a" = 2hat"i" - 3hat"j" + 2hat"k"` और `vec"b" = 2hat"i" + 3hat"j" + hat"k"`, हों तो त्रिभुज OAB का क्षेत्रफल है


किसी भी सदिश `vec"a"` के लिए `(vec"a" xx hat"i")^2 + (vec"a" xx hat"j")^2 + (vec"a" xx hat"k")^2` का मान बराबर है


सदिश `vec"a"` का सदिश `vec"b"` पर प्रक्षेप


सदिशों `vec"a" = 2hat"i" + hat"j" + 2hat"k"` और `vec"b" = hat"j" + hat"k"` दोनों ही पर मात्रक लंब सदिशों की संख्या हैं


व्यंजक `|vec"a" xx vec"b"|^2 + (vec"a".vec"b")^2` का मान ______ है।


यदि `|vec"a"| = |vec"b"|` तो यह आवश्यक है कि  `vec"a" = +- vec"b"` है।


यदि `|vec"a" + vec"b"| = |vec"a" - vec"b"|` है तब सदिश `vec"a"` और `vec"b"` लांबिक (orthogonol) हैं।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×