Advertisements
Advertisements
प्रश्न
सदिश `hat"i" - 2hat"j" + 2hat"k"` की दिशा में परिमाण 9 वाला सदिश है
विकल्प
`hat"i" - 2hat"j" + 2hat"k"`
`(hat"i" - 2hat"j" + 2hat"k")/3`
`3(hat"i" - 2hat"j" + 2hat"k")`
`9(hat"i" - 2hat"j" + 2hat"k")`
उत्तर
सही उत्तर `underline(3(hat"i" - 2hat"j" + 2hat"k"))` है।
व्याख्या:
मान लीजिए कि `vec"a" = hat"i" - 2hat"j" + 2hat"k"`
`vec"a" "की दिशा में मात्रक सदिश" = vec"a"/|vec"a"|`
= `(hat"i" - 2hat"j" + 2hat"k")/sqrt((1)^2 + (-2)^2 + (2)^2)`
= `(hat"i" - 2hat"j" + 2hat"k")/sqrt(1 + 4 + 4)`
= `(hat"i" - 2hat"j" + 2hat"k")/3`
∴ परिमाण का सदिश 9 = `(9(hat"i" - 2hat"j" + 2hat"k"))/3`
= `(3hat"i" - 2hat"j" + 2hat"k")`
APPEARS IN
संबंधित प्रश्न
यदि बिंदु (-1, -1, 2), (2, m, 5) और (3, 11, 6) सरेखी, हैं तो m का मान ज्ञात कीजिए।
परिमाण 3`sqrt2` का एक सदिश `vec"r"` ज्ञात कीजिए जो y और z-अक्षों से क्रमशः कोण `pi/4` और `pi/2` बनाता है।
परिमाण 10`sqrt3` वाले उन सभी सदिशों को ज्ञात कीजिए जो `hat"i" + 2hat"j" + hat"k"` और `-hat"i" + 3hat"j" + 4hat"k"` को अंतर्विष्ट करने वाले तल पर लंब हो।
सदिशों के प्रयोग द्वारा सिद्ध कीजिए कि cos (A – B) = cosA cosB + sinA sinB
समांतर चतुर्भुज, का क्षेत्रफल जिसकी संलग्न भुजाएँ `hat"i" + hat"k"` और `2hat"i" + hat"j"+ hat"k"` है
सदिश `vec"a" = 2hat"i" - hat"j" + hat"k"` का सदिश `vec"b" = hat"i" - 2hat"j" + 2hat"k"` के अनुदिश प्रक्षेप बराबर है
यदि `vec"a"` और `vec"b"` मात्रक सदिश हैं तो `sqrt(3) vec"a" - vec"b"` के मात्रक सदिश होने के लिए `vec"a"` और `vec"b"` के बीच क्या कोण होगा?
यदि `|vec"a"|` = 3 और –1 ≤ k ≤ 2, है तो `|"k"vec"a"|` निम्नलिखित में से किस अंतराल में है?
`vec"PQ"` की दिशा में मात्रक संदिश ज्ञात कीजिए जहाँ P और Q के निर्देशांक क्रमश: (5, 0, 8) और (3, 3, 2) हैं।
यदि `vec"a"` और `vec"b"` बिंदु A और B के क्रमश: स्थिति सदिश हैं तथा बढ़ाई गई BA में एक बिंदु C इस प्रकार है कि BC = 1.5 BA तो C का स्थिति सदिश ज्ञात कीजिए।
सदिशों के प्रयोग से k का मान ज्ञात कीजिए ताकि बिंदु (k, -10, 3), (1, -1, 3) और(3, 5, 3) संरेखी हों।
यदि `vec"a" + vec"b" + vec"c"` = 0, तो सिद्ध कीजिए कि `vec"a" xx vec"b" = vec"b" xx vec"c" = vec"c" xx vec"a"` इस परिणाम का ज्यामितीय विमोचन कीजिए।
सदिश दर `vec"a" = 3hat"i" + hat"j" + 2hat"k"` तथा सदिश `vec"b" = 2hat"i" - 2hat"j" + 4hat"k"` के बीच का sine ज्ञात कीजिए।
सदिशों के प्रयोग से त्रिभुज ABC का क्षेत्रफल ज्ञात कीजिए यदि जिसके शीर्ष A (1, 2, 3), B (2, -1, 4) और C (4, 5, -1) है।
सदिशों के प्रयोग से सिद्ध कीजिए कि एक ही आधार और एक ही समांतर रेखाओं के मध्य स्थित समांतर चतुर्भुजों के क्षेत्रफल बराबर होते हैं।
यदि `vec"a", vec"b", vec"c"` किसी त्रिभुज के शीर्षों को निर्धारित करते हैं तो, सिद्ध कीजिए कि त्रिभुज का क्षेत्रफल `1/2[vec"b" xx vec"c" + vec"c" xx vec"a" + vec"a" xx vec"b"]` है। इसके प्रयोग से तीन बिंदुओं `vec"a", vec"b", vec"c"` के संरेखी होने के प्रतिबंध का निगमन कीजिए। साथ ही त्रिभुज के तल पर अभिलंब मात्रक सदिश भी ज्ञात कीजिए।
सिद्ध कीजिए कि समांतर चतुर्भुज का क्षेत्रफल, जिसके विकर्ण `vec"a"` और `vec"b"` द्वारा व्यक्त हैं, `(|vec"a" xx vec"b"|)/2` है। साथ ही उस समांतर चतुर्भुज का क्षेत्रफल भी ज्ञात कीजिए जिसके विकर्ण `2hat"i" - hat"j" + hat"k"` और `hat"i" + 3hat"j" - hat"k"` है।
यदि `vec"a" = hat"i" + hat"j" + hat"k"` और `vec"b" = hat"j" - hat"k"` तो सदिश `vec"c"` ज्ञात कीजिए इस प्रकार कि `vec"a" xx vec"c" = vec"b"` और `vec"a"*vec"c"` = 3.
सदिश जिसका प्रारंभिक और अंतिम बिंदु क्रमश: (2, 5, 0) और (-3, 7, 4) है निम्नलिखित है
मूल बिंदु से A और B बिंदुओं के सदिश क्रमश: `vec"a" = 2hat"i" - 3hat"j" + 2hat"k"` और `vec"b" = 2hat"i" + 3hat"j" + hat"k"`, हों तो त्रिभुज OAB का क्षेत्रफल है
सदिश `vec"a"` का सदिश `vec"b"` पर प्रक्षेप
यदि तीन सदिश `vec"a", vec"b", vec"c"` इस प्रकार हैं कि `vec"a" + vec"b" + vec"a" = vec0` और `|vec"a"|` = 2, `|vec"b"|` = 3, `|vec"c"|` = 5, है, तो `vec"a"*vec"b" + vec"b"*vec"c" + vec"c"*vec"a"` का मान
यदि `|vec"a"|` = 4 और −3 ≤ λ ≤ 2 है तो `|lambdavec"a"|` का अंतराल है
सदिशों `vec"a" = 2hat"i" + hat"j" + 2hat"k"` और `vec"b" = hat"j" + hat"k"` दोनों ही पर मात्रक लंब सदिशों की संख्या हैं
यदि `vec"a"` और `vec"b"` समचतुर्भुज की संलग्न भुजाएँ हैं तब `vec"a" * vec"b"` = 0 है।