Advertisements
Advertisements
प्रश्न
यदि ∆ABC ~ ∆QRP, `(ar(ABC))/(ar(PQR)) = 9/4`, AB = 18 cm और BC = 15 cm है, तो PR बराबर ______ है।
विकल्प
10 cm
12 cm
`20/3` cm
8 cm
उत्तर
यदि ∆ABC ~ ∆QRP, `("ar(ABC)")/("ar(PQR)") = 9/4`, AB = 18 cm और BC = 15 cm है, तो PR बराबर 10 cm है।
स्पष्टीकरण:
दिया गया है, ∆ABC ~ ∆QRP,
AB = 18 cm
और BC = 15 cm
हम जानते हैं कि, दो समरूप त्रिभुजों के क्षेत्रफल का अनुपात उनकी संगत भुजाओं के वर्ग के अनुपात के बराबर होता है।
∴ `("ar(∆ABC)")/("ar(∆QRP)") = ("BC")^2/("RP")^2`
परंतु, `("ar(∆ABC)")/("ar(∆PQR)") = 9/4` ...[दिया गया है]
⇒ `(15)^2/("RP")^2 = 9/4` ...[∵ BC = 15 cm, दिया गया है]
⇒ (RP)2 = `(225 xx 4)/9` = 100
∴ RP = 10 cm
APPEARS IN
संबंधित प्रश्न
आकृति में, DE || BC है। EC ज्ञात कीजिए:
आकृति में DE || OQ और DF || OR है। दर्शाइए कि EF || QR है।
आकृति में क्रमशः OP, OQ और OR पर स्थित बिंदु A, B और C इस प्रकार हैं कि AB || PQ और AC || PR है। दर्शाइए कि BC || QR है।
आधारभूत समानुपातिकता प्रमेय का प्रयोग करते हुए सिद्ध कीजिए कि एक त्रिभुज की एक भुजा के मध्य-बिंदु से होकर दूसरी भुजा के समांतर खींची गई रेखा तीसरी भुजा को समद्विभाजित करती है।(याद कीजिए कि आप इसे कक्षा IX में सिद्ध कर चुके हैं।)
एक चतुर्भुज ABCD के विकर्ण परस्पर बिंदु O पर इस प्रकार प्रतिच्छेद करते हैं कि `("AO")/("BO") = ("CO")/("DO")` है। दर्शाइए कि ABCD एक समलंब है।
आकृति में PS कोण QPR का समद्विभाजक है। सिद्ध कीजिए कि `"QS"/"SR" = "PQ"/"PR"` है।
यह दिया है कि `(BC)/(QR) = 1/3` के साथ ΔABC ~ ΔPQR, है। तब `(ar(PRQ))/(ar(BCA))` बराबर ______ है।
ΔDEF ~ ΔRPQ दिया है। क्या कहना सत्य है कि ∠D = ∠R और ∠F = ∠P? क्यों?
ΔXYZ मे XY = 4 सेमी, YZ = 6 सेमी, XZ = 5 सेमी, यदि ΔXYZ ~ ΔPQR तथा PQ = 8 सेमी हो तो ΔPQR की शेष भुजाओं की लंबाई ज्ञात कीजिए।
समरूप त्रिभुजों की जोड़ी की कच्ची आकृति बनाइए । उन्हें नाम दें । उनके सर्वांगसम कोण समान चिह्नों से दर्शाएँ । त्रिभुजों की संगत भुजाओं की लंबाइयाँ समानुपात में हों ऐसी संख्याएँ दर्शाइए ।