हिंदी

यदि एक समांतर चतुर्भुज के विकर्ण बराबर हों, तो दर्शाइए कि वह एक आयत है। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

यदि एक समांतर चतुर्भुज के विकर्ण बराबर हों, तो दर्शाइए कि वह एक आयत है।

योग

उत्तर

मान लीजिए ABCD एक समांतर चतुर्भुज है। यह दर्शाने के लिए कि ABCD एक आयत है, हमें यह सिद्ध करना होगा कि इसका एक अंत: कोण 90° है।

ΔABC और ΔDCB में,

AB = DC           ...(समानांतर चतुर्भुज की सम्मुख भुजाएँ बराबर होती हैं।)

BC = BC           ...(उभयनिष्ठ)

AC = DB          ...(दिया गया है।)

∴ ΔABC ≅ ΔDCB    ...(SSS सर्वांगसमता नियम से)

⇒ ∠ABC = ∠DCB

यह ज्ञात है कि तिर्यक रेखा के एक ही ओर के कोणों के मापों का योग 180º होता है।

∠ABC + ∠DCB = 180°     ...(AB || CD)

⇒ ∠ABC + ∠ABC = 180°

⇒ 2∠ABC = 180°

⇒ ∠ABC = 90°

क्योंकि ABCD एक समांतर चतुर्भुज है और इसका एक अंत: कोण 90° है, इसलिए ABCD एक आयत है।

shaalaa.com
चतुर्भुज के प्रकार - समांतर चतुर्भुज के गुणधर्म
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: चतुर्भुज - प्रश्नावली 8.1 [पृष्ठ १७५]

APPEARS IN

एनसीईआरटी Mathematics [Hindi] Class 9
अध्याय 8 चतुर्भुज
प्रश्नावली 8.1 | Q 2. | पृष्ठ १७५

संबंधित प्रश्न

ABCD एक आयत है जिसमें विकर्ण AC दोनों कोणों A और C को समद्विभाजित करता है। दर्शाइए कि: 

  1. ABCD एक वर्ग है।
  2. विकर्ण BD दोनों कोणों B और D को समद्विभाजित करता है।

किसी समांतर चतुर्भुज के दो आसन्न कोणों का अनुपात 3 : 2 है। समांतर चतुर्भुज के सभी कोणों की माप ज्ञात कीजिए।


निम्न आकृति GUNS समांतर चतुर्भुज हैं। x तथा y ज्ञात कीजिए (लंबाई cm में है) :


एक चतुर्भुज का नाम बताइए जिसके विकर्ण एक दूसरे को समद्विभाजित करते है।


एक चतुर्भुज ABCD के सम्मुख कोण बराबर हैं। यदि AB = 4 cm है, तो CD निर्धारित कीजिए।


ABCD एक समचतुर्भुज है, जिसमें D से AB पर शीर्षलंब AB को समद्विभाजित करता है। समचतुर्भुज के कोण ज्ञात कीजिए।


ABCD एक समांतर चतुर्भुज है। x, y और z के मान ज्ञात कीजिए।


ABCD एक समांतर चतुर्भुज है। कोण A का समद्विभाजक CD को X पर प्रतिच्छेद करता है तथा कोण C का समद्विभाजक AB को Y पर प्रतिच्छेद करता है। क्या AXCY एक समांतर चतुर्भुज है? कारण दीजिए।


आकृति में, बिंदु G, ΔDEF की माध्यिकाओं का संगामी बिंदु है। किरण DG पर बिंदु H इस प्रकार लें कि D-G-H तथा DG = GH, हो तो सिद्ध कीजिए कि `square` GEHF समांतर चतुर्भुज है।


संलग्न आकृति में रेख AB || रेख PQ , रेख AB ≅ रेख PQ, रेख AC || रेख PR, रेख AC ≅ रेख PR तो सिद्ध कीजिए कि रेख BC || रेख QR तथा रेख BC ≅ रेख QR


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×