मराठी

यदि एक समांतर चतुर्भुज के विकर्ण बराबर हों, तो दर्शाइए कि वह एक आयत है। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

यदि एक समांतर चतुर्भुज के विकर्ण बराबर हों, तो दर्शाइए कि वह एक आयत है।

बेरीज

उत्तर

मान लीजिए ABCD एक समांतर चतुर्भुज है। यह दर्शाने के लिए कि ABCD एक आयत है, हमें यह सिद्ध करना होगा कि इसका एक अंत: कोण 90° है।

ΔABC और ΔDCB में,

AB = DC           ...(समानांतर चतुर्भुज की सम्मुख भुजाएँ बराबर होती हैं।)

BC = BC           ...(उभयनिष्ठ)

AC = DB          ...(दिया गया है।)

∴ ΔABC ≅ ΔDCB    ...(SSS सर्वांगसमता नियम से)

⇒ ∠ABC = ∠DCB

यह ज्ञात है कि तिर्यक रेखा के एक ही ओर के कोणों के मापों का योग 180º होता है।

∠ABC + ∠DCB = 180°     ...(AB || CD)

⇒ ∠ABC + ∠ABC = 180°

⇒ 2∠ABC = 180°

⇒ ∠ABC = 90°

क्योंकि ABCD एक समांतर चतुर्भुज है और इसका एक अंत: कोण 90° है, इसलिए ABCD एक आयत है।

shaalaa.com
चतुर्भुज के प्रकार - समांतर चतुर्भुज के गुणधर्म
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: चतुर्भुज - प्रश्नावली 8.1 [पृष्ठ १७५]

APPEARS IN

एनसीईआरटी Mathematics [Hindi] Class 9
पाठ 8 चतुर्भुज
प्रश्नावली 8.1 | Q 2. | पृष्ठ १७५

संबंधित प्रश्‍न

क्या एक चतुर्भुज ABCD समांतर चतुर्भुज हो सकता है यदि ∠A = 70° और ∠C = 65°?


चतुर्भुज ABCD में, ∠A + ∠D = 180° है। इस चतुर्भुज को कौन-सा विशेष नाम दिया जा सकता है?


एक समांतर चतुर्भुज के एक अधिक कोण के शीर्ष से खींचे गए उस समांतर चतुर्भुज के दो शीर्षलंबों के बीच का कोण 60° है। इस समांतर चतुर्भुज के सभी कोण ज्ञात कीजिए।


निम्न में से कौन एक समांतर चतुर्भुज का गुण है?


समांतर चतुर्भुज LOST में, SN ⊥ OL और SM ⊥ LT है। ∠STM, ∠SON और ∠NSM ज्ञात कीजिए।


ABCD एक समांतर चतुर्भुज है। कोण A का समद्विभाजक CD को X पर प्रतिच्छेद करता है तथा कोण C का समद्विभाजक AB को Y पर प्रतिच्छेद करता है। क्या AXCY एक समांतर चतुर्भुज है? कारण दीजिए।


सिद्ध कीजिए कि एक समांतर चतुर्भुज के कोणों के समद्विभाजकों द्वारा बना चतुर्भुज एक आयत होता है।


आकृति में, बिंदु G, ΔDEF की माध्यिकाओं का संगामी बिंदु है। किरण DG पर बिंदु H इस प्रकार लें कि D-G-H तथा DG = GH, हो तो सिद्ध कीजिए कि `square` GEHF समांतर चतुर्भुज है।


संलग्न आकृति में समांतर चतुर्भुज `square` ABCD की भुजाओं पर P, Q, R, S इस प्रकार है कि, AP = BQ = CR = DS तो सिद्ध कीजिए कि `square` PQRS समांतर चतुर्भुज है।


संलग्न आकृति में रेख AB || रेख PQ , रेख AB ≅ रेख PQ, रेख AC || रेख PR, रेख AC ≅ रेख PR तो सिद्ध कीजिए कि रेख BC || रेख QR तथा रेख BC ≅ रेख QR


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×