हिंदी

यदि सदिश ijk3i^-6j^+k^ और ijk2i^-4j^+λk^ समांतर हैं तो λ का मान है - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

यदि सदिश `3hat"i" - 6hat"j" + hat"k"` और `2hat"i" - 4hat"j" + lambdahat"k"` समांतर हैं तो λ का मान है

विकल्प

  • `2/3`

  • `3/2`

  • `5/2`

  • `2/5`

MCQ

उत्तर

सही उत्तर `underline(2/3)` है।

व्याख्या:

मान लीजिए कि `vec"a" = 3hat"i" - 6hat"j" + hat"k"`

`vec"b" = 2hat"i" - 4hat"j" + lambdahat"k"`

क्योंकि दिए गए सदिश समांतर हैं,

∴ उनके बीच का कोण 0° है

तो `vec"a"*vec"b" = |vec"a"||vec"b"| cos 0`

⇒ `(3hat"i" - 6hat"j" + hat"k")*(2hat"i" - 4hat"j" + lambdahat"k") = |3hat"i" - 6hat"j" + hat"k"| |2hat"i" - 4hat"j" + lambdahat"k"|`

`6 + 24 + lambda = sqrt(9 + 36 + 1) * sqrt(4 + 16 + lambda^2)`

`30 + lambda = sqrt(46) * sqrt(20 + lambda^2)`

दोनों पक्षों का वर्ग करने पर, हम प्राप्त करते हैं

900 + λ2 + 60λ = 46(20 + λ2)

⇒ 900 + λ2 + 60λ = 920 + 46λ2

⇒ λ2 – 46λ2 + 60λ + 900 – 920 = 0

⇒ – 45λ2 + 60λ – 20 = 0

⇒ 9λ2 – 12λ + 4 = 0

⇒ (3λ – 2)2 = 0

⇒ 3λ – 2 = 0

⇒ 3λ = 2

∴  λ = `2/3`

वैकल्पिक विधि:

मान लीजिए कि `vec"a" = "a"_1hat"i" + "a"_2hat"j" + "a"_3hat"k"` 

और `vec"b" = "b"_1hat"i" + "b"_2hat"j" + "b"_3hat"k"`

यदि `vec"a" | | vec"b"`

∴ `"a"_1/"b"_1 = "a"_2/"b"_2 = "a"_3/"b"_3`

⇒ `3/2 = (-6)/(-4) = 1/lambda`

⇒ `1/lambda = 3/2`

⇒ λ = `2/3`

shaalaa.com
सदिश बीजगणित
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 10: सदिश बीजगणित - प्रश्नावली [पृष्ठ २११]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
अध्याय 10 सदिश बीजगणित
प्रश्नावली | Q 24 | पृष्ठ २११

संबंधित प्रश्न

सदिशों `vec"a" = 2hat"i" - hat"j" + 2hat"k"` और `vec"b" = -hat"i" + hat"j" + 3hat"k"`  के योग के अनुदिश मात्रक सदिश ज्ञात कीजिए।


P और Q दो बिंदुओं के स्थिति सदिश क्रमश: `vec"OP" = 2vec"a" + vec"b"` और  `vec"OQ" = vec"a" - 2vec"b"` हैं। एक ऐसे बिंदु R का स्थिति सदिश ज्ञात कीजिए जो PQ को 1:2 के अनुपात में अंत: 


परिमाण 10`sqrt3` वाले उन सभी सदिशों को ज्ञात कीजिए जो  `hat"i" + 2hat"j" + hat"k"` और `-hat"i" + 3hat"j" + 4hat"k"` को अंतर्विष्ट करने वाले तल पर लंब हो।


सदिशों के प्रयोग द्वारा सिद्ध कीजिए कि cos (A – B) = cosA cosB + sinA sinB


उस बिंदु का स्थिति सदिश, जो दो बिंदुओं, जिनके स्थिति सदिश क्रमश: `vec"a" + vec"b"` और 2`vec"a" + vec"b"` हैं, को 1:2 के अनुपात में विभाजित करता है,


समांतर चतुर्भुज, का क्षेत्रफल जिसकी संलग्न भुजाएँ  `hat"i" + hat"k"` और `2hat"i" + hat"j"+ hat"k"` है


यदि `vec"a"` और `vec"b"` मात्रक सदिश हैं तो `sqrt(3)  vec"a" - vec"b"` के मात्रक सदिश होने के लिए  `vec"a"` और `vec"b"` के बीच क्या कोण होगा?


एक मात्रक सदिश जो सदिशों `hat"i" - hat"j"` और `hat"i" + hat"j"` दोनों के लंबवत है तथा एक दक्षिणावर्ती पद्धति को निर्मित करने वाला सदिश है।


`vec"PQ"` की दिशा में मात्रक संदिश ज्ञात कीजिए जहाँ P और Q के निर्देशांक क्रमश: (5, 0, 8) और (3, 3, 2) हैं।


यदि `vec"a"` और `vec"b"` बिंदु A और B के क्रमश: स्थिति सदिश हैं तथा बढ़ाई गई BA में एक बिंदु C इस प्रकार है कि BC = 1.5 BA तो C का स्थिति सदिश ज्ञात कीजिए।


परिमाण 6 का एक सदिश ज्ञात कीजिए जो दोनों ही सदिशों  `2hat"i" - hat"j" + 2hat"k"` और `4hat"i" - hat"j" + 3hat"k"` पर लंब है।


यदि A, B, C, D बिंदुओं के स्थिति सदिश क्रमश: `hat"i" + hat"j" - hat"k", 2hat"i" - hat"j" + 3hat"k", 2hat"i" - 3hat"k", 3hat"i" - 2hat"j" + hat"k"` है तो `vec"AB"` का `vec"CD"`  अनुदिश प्रक्षेप ज्ञात कीजिए।


सदिशों के प्रयोग से सिद्ध कीजिए कि एक ही आधार और एक ही समांतर रेखाओं के मध्य स्थित समांतर चतुर्भुजों के क्षेत्रफल बराबर होते हैं।


यदि `vec"a", vec"b", vec"c"` किसी त्रिभुज के शीर्षों को निर्धारित करते हैं तो, सिद्ध कीजिए कि त्रिभुज का क्षेत्रफल `1/2[vec"b" xx vec"c" + vec"c" xx vec"a" + vec"a" xx vec"b"]` है। इसके प्रयोग से तीन बिंदुओं `vec"a", vec"b", vec"c"` के संरेखी होने के प्रतिबंध का निगमन कीजिए। साथ ही त्रिभुज के तल पर अभिलंब मात्रक सदिश भी ज्ञात कीजिए।


सिद्ध कीजिए कि समांतर चतुर्भुज का क्षेत्रफल, जिसके विकर्ण `vec"a"` और `vec"b"` द्वारा व्यक्त हैं, `(|vec"a" xx vec"b"|)/2` है। साथ ही उस समांतर चतुर्भुज का क्षेत्रफल भी ज्ञात कीजिए जिसके विकर्ण  `2hat"i" - hat"j" + hat"k"` और `hat"i" + 3hat"j" - hat"k"` है।


दो सदिशों  `vec"a"` और `vec"b"` के परिमाण क्रमश: `sqrt(3)`  और 4 हैं तथा `vec"a" * vec"b" = 2sqrt(3)` है। इनके बीच का कोण है


मूल बिंदु से A और B बिंदुओं के सदिश क्रमश: `vec"a" = 2hat"i" - 3hat"j" + 2hat"k"` और `vec"b" = 2hat"i" + 3hat"j" + hat"k"`, हों तो त्रिभुज OAB का क्षेत्रफल है


किसी भी सदिश `vec"a"` के लिए `(vec"a" xx hat"i")^2 + (vec"a" xx hat"j")^2 + (vec"a" xx hat"k")^2` का मान बराबर है


यदि `|vec"a"|` = 10, `|vec"b"|` = 2 और `vec"a".vec"b"` = 12, हो तो `|vec"a" xx vec"b"|` का मान है


यदि `vec"a", vec"b", vec"c"` इस प्रकार के मात्रक सदिश हैं कि `vec"a" + vec"b" + vec"c"` = 0 है तो `vec"a" * vec"b" + vec"b" * vec"c" + vec"c" * vec"a"` का मान


सदिश `vec"a"` का सदिश `vec"b"` पर प्रक्षेप


यदि `|vec"a"|` = 4 और −3 ≤ λ ≤ 2 है तो `|lambdavec"a"|` का अंतराल है


सदिशों `vec"a" = 2hat"i" + hat"j" + 2hat"k"` और `vec"b" = hat"j" + hat"k"` दोनों ही पर मात्रक लंब सदिशों की संख्या हैं


यदि `|vec"a" xx vec"b"|^2 + |vec"a".vec"b"|^2` = 144 और `|vec"a"|` = 4, तो `|vec"b"|` ______ के बराबर है।


यदि `|vec"a" + vec"b"| = |vec"a" - vec"b"|` है तब सदिश `vec"a"` और `vec"b"` लांबिक (orthogonol) हैं।


सूत्र  `(vec"a" + vec"b")^2 = vec"a"^2 + vec"b"^2 + 2vec"a" xx vec"b"` शून्येतर `vec"a"` और `vec"b"` सदिशों के लिए सत्य है।


यदि `vec"a"` और `vec"b"` समचतुर्भुज की संलग्न भुजाएँ हैं तब `vec"a" * vec"b"` = 0 है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×