Advertisements
Advertisements
प्रश्न
`2sqrt(3) + sqrt(3)` बराबर है :
पर्याय
`2sqrt(6)`
6
`3sqrt(3)`
`4sqrt(6)`
उत्तर
`bb(3sqrt(3))`
स्पष्टीकरण -
दिया गया - संख्या `2sqrt(3) + sqrt(3)`
`2sqrt(3) + sqrt(3) = sqrt(3)(2 + 1)`
= `sqrt(3)(3)`
= `3sqrt(3)`
APPEARS IN
संबंधित प्रश्न
सिद्ध कीजिए कि निम्नलिखित संख्या अपरिमेय हैं:
`1/sqrt2`
नीचे दिए गए कथन सत्य हैं या असत्य हैं। कारण के साथ अपने उत्तर दीजिए।
संख्या रेखा का प्रत्येक बिन्दु `sqrtm` के रूप का होता है, जहाँ m एक प्राकृत संख्या है।
बताइए कि निम्नलिखित संख्या परिमेय हैं या अपरिमेय हैं:
0.3796
एक शून्येतर परिमेय संख्या और एक अपरिमेय संख्या का गुणनफल होता है
सिद्ध कीजिए कि `sqrt"p"+sqrt"q"` एक अपरिमेय संख्या है, जहाँ p और q अभाज्य संख्याएँ हैं।
निम्नलिखित में से कौन-सी एक अपरिमेय संख्या है?
निम्नलिखित में से कौन-सी एक अपरिमेय संख्या है?
`p/q` के रूप में 1.999... का मान, जहाँ p और q पूर्णांक हैं तथा q ≠ 0, होगा :
मान लीजिए कि x और y क्रमशः परिमेय और अपरिमेय संख्याएँ हैं। क्या x + y आवश्यक रूप से एक अपरिमेय संख्या है? अपने उत्तर की पुष्टि के लिए एक उदाहरण दीजिए।
कक्षा के लिए क्रियाकलाप (वर्गमूल सर्पिल की रचना): कागज की एक बड़ी शीट लीजिए और नीचे दी गई विधि से “वर्गमूल सर्पिल” (square root spiral) की रचना कीजिए। सबसे पहले एक बिन्दु O लीजिए और एकक लंबाई का रेखाखंड (line segment) OP खींचिए। एकक लंबाई वाले OP1 पर लंब रेखाखंड P1P2 खींचिए। अब OP2, पर लंब रेखाखंड P2P3 खींचिए। तब OP3 पर लंब रेखाखंड P3P4 खींचिए। इस प्रक्रिया को जारी रखते हुए OPn–1 पर एकक लंबाई वाला लंब रेखाखंड खींचकर आप रेखाखंड Pn–1Pn प्राप्त कर सकते हैं। इस प्रकार आप बिन्दु O, P1, P2, P3,..., Pn,... प्राप्त कर लेंगे और उन्हें मिलाकर `sqrt2, sqrt3, sqrt4...` को दर्शाने वाला एक सुंदर सर्पिल प्राप्त कर लेंगे।