मराठी

सिद्ध कीजिए कि निम्नलिखित संख्या अपरिमेय हैं: 12 - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

सिद्ध कीजिए कि निम्नलिखित संख्या अपरिमेय हैं:

`1/sqrt2` 

बेरीज

उत्तर

`1/sqrt2`

`1/sqrt2 xx sqrt2/sqrt2 = sqrt2/2`

मान लीजिए a = `(1/2)sqrt2` एक परिमेय संख्या है।

∴ `1/2(sqrt2)` परिमेय है।

मान लीजिए `1/2 (sqrt2) = a/b`, जैसे कि a और b सह-अभाज्य पूर्णांक हैं और b ≠ 0 है।

∴ `sqrt2 = (2a)/b`    ...(1)

चूँकि दो पूर्णांकों का विभाजन परिमेय होता है।

∴ `(2a)/b` परिमेय है।

(1) से, `sqrt2` परिमेय है, जो के विपरीत है खंडन करता है कि `sqrt2` अपरिमेय है।

∴ हमारा अनुमान गलत है।

इस प्रकार, `1/sqrt2` अपरिमेय है।

shaalaa.com
अपरिमेय संख्याओं का पुनर्भ्रमण
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: वास्तविक संख्याएँ - प्रश्नावली 1.3 [पृष्ठ १७]

APPEARS IN

एनसीईआरटी Mathematics [Hindi] Class 10
पाठ 1 वास्तविक संख्याएँ
प्रश्नावली 1.3 | Q 3. (i) | पृष्ठ १७

संबंधित प्रश्‍न

सिद्ध कीजिए कि `3 + 2sqrt5` एक अपरिमेय संख्या है।


नीचे दिए गए कथन सत्य हैं या असत्य हैं। कारण के साथ अपने उत्तर दीजिए।

प्रत्येक वास्तविक संख्या एक अपरिमेय संख्या होती है।


दिखाइए कि संख्या रेखा पर `sqrt5` को किस प्रकार निरूपित किया जा सकता है।


परिमेय संख्याओं `5/7` और `9/11` बीच की तीन अलग-अलग अपरिमेय संख्याएँ ज्ञात कीजिए।


बताइए कि निम्नलिखित संख्या परिमेय हैं या अपरिमेय हैं:

7.478478


सिद्ध कीजिए कि `sqrt"p"+sqrt"q"` एक अपरिमेय संख्या है, जहाँ p और q अभाज्य संख्याएँ हैं।


किन्हीं दो अपरिमेय संख्याओं का गुणनफल होता है :


संख्या `sqrt(2)` का दशमलव प्रसार है :


निम्नलिखित में से कौन-सी एक अपरिमेय संख्या है?


कक्षा के लिए क्रियाकलाप (वर्गमूल सर्पिल की रचना): कागज की एक बड़ी शीट लीजिए और नीचे दी गई विधि से “वर्गमूल सर्पिल” (square root spiral) की रचना कीजिए। सबसे पहले एक बिन्दु O लीजिए और एकक लंबाई का रेखाखंड (line segment) OP खींचिए। एकक लंबाई वाले OP1 पर लंब रेखाखंड P1P2 खींचिए। अब OP2, पर लंब रेखाखंड P2P3 खींचिए। तब OP3 पर लंब रेखाखंड P3P4 खींचिए। इस प्रक्रिया को जारी रखते हुए OPn–1 पर एकक लंबाई वाला लंब रेखाखंड खींचकर आप रेखाखंड Pn–1Pn प्राप्त कर सकते हैं। इस प्रकार आप बिन्दु O, P1, P2, P3,..., Pn,... प्राप्त कर लेंगे और उन्हें मिलाकर `sqrt2, sqrt3, sqrt4...` को दर्शाने वाला एक सुंदर सर्पिल प्राप्त कर लेंगे।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×