Advertisements
Advertisements
प्रश्न
दिखाइए कि संख्या रेखा पर `sqrt5` को किस प्रकार निरूपित किया जा सकता है।
उत्तर
एक संख्या रेखा खींचिए और उस पर बिन्दु O और A इस प्रकार लीजिए कि OA = 1 इकाई हो।
BA ⊥ OA को BA = 1 इकाई के रूप में खींचिए।
OB को मिलाइए = `sqrt2` इकाइयाँ।
अब BB1 ⊥ OB इस प्रकार खींचिए कि BB1 = 1 इकाई हो।
OB1 को मिलाइए = `sqrt3` इकाइयाँ।
इसके बाद, B1B2 ⊥ OB1 इस प्रकार खींचिए कि B1B2 = 1 इकाई हो।
OB2 को मिलाइए = 1 इकाई हो।
OB2 = `sqrt4` इकाइयों को मिलाइए।
फिर से B2B3 ⊥ OB2 इस प्रकार खींचिए कि B2B3 = 1 इकाई हो।
OB3 को मिलाइए = `sqrt5` इकाइयाँ।
APPEARS IN
संबंधित प्रश्न
सिद्ध कीजिए कि निम्नलिखित संख्या अपरिमेय हैं:
`1/sqrt2`
नीचे दिए गए कथन सत्य हैं या असत्य हैं। कारण के साथ अपने उत्तर दीजिए।
संख्या रेखा का प्रत्येक बिन्दु `sqrtm` के रूप का होता है, जहाँ m एक प्राकृत संख्या है।
नीचे दिए गए कथन सत्य हैं या असत्य हैं। कारण के साथ अपने उत्तर दीजिए।
प्रत्येक वास्तविक संख्या एक अपरिमेय संख्या होती है।
बताइए कि निम्नलिखित संख्या परिमेय हैं या अपरिमेय हैं:
7.478478
एक शून्येतर परिमेय संख्या और एक अपरिमेय संख्या का गुणनफल होता है
संख्या `sqrt(2)` का दशमलव प्रसार है :
निम्नलिखित में से कौन-सी एक अपरिमेय संख्या है?
`p/q` के रूप में 1.999... का मान, जहाँ p और q पूर्णांक हैं तथा q ≠ 0, होगा :
`sqrt(2)/3` एक परिमेय संख्या है।
कक्षा के लिए क्रियाकलाप (वर्गमूल सर्पिल की रचना): कागज की एक बड़ी शीट लीजिए और नीचे दी गई विधि से “वर्गमूल सर्पिल” (square root spiral) की रचना कीजिए। सबसे पहले एक बिन्दु O लीजिए और एकक लंबाई का रेखाखंड (line segment) OP खींचिए। एकक लंबाई वाले OP1 पर लंब रेखाखंड P1P2 खींचिए। अब OP2, पर लंब रेखाखंड P2P3 खींचिए। तब OP3 पर लंब रेखाखंड P3P4 खींचिए। इस प्रक्रिया को जारी रखते हुए OPn–1 पर एकक लंबाई वाला लंब रेखाखंड खींचकर आप रेखाखंड Pn–1Pn प्राप्त कर सकते हैं। इस प्रकार आप बिन्दु O, P1, P2, P3,..., Pn,... प्राप्त कर लेंगे और उन्हें मिलाकर `sqrt2, sqrt3, sqrt4...` को दर्शाने वाला एक सुंदर सर्पिल प्राप्त कर लेंगे।